An Energy Efficient Datapath for Asymmetric
Cryptography

Andrew D. Targhetta and Paul V. Gratz
Department of Electrical and Computer Engineering
Texas A&M University

Abstract—Public key encryption on resource constrained de-
vices can be a burden in terms of latencies per operation but
also in terms of energy consumed. For certain applications, such
as WSN and RFID tags, the energy budget is quite small. Under-
standing the energy cost of each public key operation is impor-
tant. This paper explores the energy consumption of public key
cryptography by presenting a parameterizable microarchitecture
for accelerating public key operations and demonstrating how
the datapath width and key size effects the energy consumption
per Montgomery multiplication, a key component of public key
encryption algorithms. We find that for O(n?) algorithms, like
Montgomery multiplication, a larger datapath provides optimal
energy efficiency. Moreover, our microarchitecture is capable of
reducing the energy consumption of Montgomery multiplication
by a factor of 50 while providing a speed up of 10x for a key
size of 192-bits over the traditional software implementation on
a low-power embedded processor.

I. INTRODUCTION

Asymmetric cryptography, also know as Public key en-
cryption, has become an essential component in secure com-
munications. Unlike its symmetric counterpart, asymmetric
cryptography requires separate keys for the encryption and
decryption operations. Asymmetric cryptography has been
used to solve a variety of security challenges, ranging from
session key establishment for secure communications to digital
signatures for message authenticity and non-repudiation [5].
While symmetric cryptography is based on data shifts and
permutations, asymmetric cryptography is based on math-
ematically hard problems. As a result, the computational
requirements for asymmetric cryptography are far greater than
that of symmetric cryptography [13].

To enable asymmetric cryptographic capabilities on resource
constrained devices, acceleration hardware is often employed.
Example applications include but are not limited to smart
cards, Wireless Sensor Networks (WSN), and Radio Fre-
quency Identification (RFID) tags [1], [6], [16]. Wander et
al. found, in the WSN domain, fairly weak asymmetric cryp-
tography (160-bit ECC equivalent to 1024-bit RSA) consumes
approximately 72% of the energy alloted for communication
handshaking. Moreover, they assume that only 5% to 10%
of a WSN’s energy budget is available for handshakes [23].
For RFID tags, it is difficult to quantify the energy budget
for encryption; however, since most RFIDs are passive energy
harvesters, it is significantly less than that of a WSN node.

Much of the research and development in the area of asym-
metric cryptographic hardware acceleration has focused on
minimizing both the time per cryptographic operation and the

amount of hardware resources consumed, while other efforts
have attempted to address reconfigurability. However, a limited
amount of work has been put into understanding the power and
energy impact of asymmetric cryptographic hardware accelera-
tion. Recognizing the trades-offs between energy consumption,
logic utilization, and performance in cryptographic hardware
designs is important in any sort of energy constrained system.
Therefore, the purpose of this paper is two fold. First, a
parameterizable microarchitecture for accelerating asymmetric
cryptographic operations will be introduced. Second, various
configurations of this novel microarchitecture will be evaluated
in terms of energy consumption. From the results presented
in this paper, conclusions will be made as to which datapath
width yields the most energy efficient design. Likewise, the
effect of security requirements on energy consumption will
be provided. To demonstrate the significance of this work,
the energy consumption of our hardware will be compared to
that of an ultra low power processor, an ARM Cortex-M3,
performing the same operations.

II. BACKGROUND
A. Underlying Mathematics

Public key encryption is based on a one-way function, a
mathematical function which has a computationally feasible
forward operation and a computationally infeasible reverse
operation. RSA is a public key encryption scheme which
uses modular exponentiation as a one-way function [17]. To
perform modular exponentiation, a series of large integer
multiplications are computed such that the modulo operator
is used to reduce intermediate results. The reverse operation,
referred to as the Discrete Logarithm Problem (DLP), is
considered intractable as the size of the modulus increases
[13]. Tt should be noted that modular multiplication is part
of a larger class of finite field operations, and increasing the
number of bits used to represent the modulus increases the
size of the finite field.

The successor to RSA is Elliptic Curve Cryptography
(ECC), which utilizes scalar point multiplication over elliptic
curves [11], [14]. Scalar point multiplication involves repeated
addition and doubling of points on an elliptic curve defined
over a finite field and is analogous to modular exponen-
tiation. Elliptic curve arithmetic requires modular addition,
subtraction, and inversion, along with modular multiplication.
Moreover, techniques involving three dimensional coordinate
systems are typically employed, such that modular multiplica-
tion dominates the algorithm’s execution time [3].

Using algorithm complexity approximations, we analyti-
cally calculated the percentage of time spent in modular
multiplication for an ECC operation to be between 76.4% to
98.1% . Our first order approximation with various keys sizes
and datapath configurations assumes the use affine-Jacobian
mixed coordinates to reduce the required number of inversions
to one and Fermat’s Little theorem for the inversion computa-
tion [3],[4]. It should be noted, however, that the hardware
described in this paper is capable of performing modular
addition and subtraction along with modular multiplication.

As with modular exponentiation, the reverse operation,
known as the Elliptic Curve Discrete Logarithm Problem
(ECDLP), is considered intractable. The advantage to using
elliptic curves for asymmetric cryptography is that the ECDLP
is computationally harder than the DLP, and thus, the size of
the underlying finite field is much smaller when compared to
modular exponentiation schemes of equivalent security. Based
on existing computational capabilities, integer computations in
the range of 192-bits to 384-bits provide adequate security for
ECC [9]. Other forms of finite field mathematics not involving
modular arithmetic can be utilized for ECC [8]. However, this
work focuses on modular arithmetic, also known as GF(p)
mathematics, in order to support backwards compatibility with
RSA.

To compute modular addition (subtraction), the reduction
step, i.e. the modulo operation, consists of a simple conditional
subtraction (addition) of the modulus. Multiplication, on the
other hand, requires a more complicated reduction step. For
brevity, the focus of this paper will be on modular multi-
plication. Many reduction techniques exist for modular mul-
tiplication. For software implementations, special Mersenne
primes selected by the National Institute of Standards and
Technology (NIST) can be used which allow modular con-
gruency to be used in order to reduce a multiplication result
using substitutions, additions, and subtractions [2]. The re-
duction operation is modulus dependent, requiring algorithm
adjustments when changes to the ECC parameters are made.
Obviously, this is not a problem for software implementations
where reconfigurability is key. When modular multiplication is
implemented in hardware, the preferred method of reduction
is Montgomery reduction [15]. Operands are initially mapped
into an isomorphic GF'(p), known as the Montgomery domain,
where each reduction step simply requires the addition of
a multiple of the modulus and a right shift. Montgomery
reduction is ideal for hardware in the sense that the exact
same reduction technique works on any prime modulus, and
the algorithm has a limited number of conditional branches
in comparison to other techniques. This equates to a reduced
amount of control logic and allows for efficient pipelining.

When Montgomery reduction is combined with multipli-
cation, the operation is referred to as Montgomery multipli-
cation. Since Peter Montgomery’s original proposal in 1985,
significant improvements have been made on the algorithm,
and a variety of computational methods exist for Montgomery
multiplication. Mainly, the reduction steps have been inter-
leaved with the multiplication steps, which in turn reduce
the amount of unnecessary computation. Kog et al. provide a
comprehensive examination of the various interleaved methods

for Montgomery multiplication in software [12]. The Coarsely
Integrated Operand Scanning (CIOS) algorithm was selected
for this work due to the fact that the hardware implementation
is only dependent on the word-size of the datapath and not on
the bit-length of the integers it computes.

B. Energy Consumption in Digital Circuits

Modern VLSI circuits utilize CMOS technology. Under-
standing how energy is consumed in CMOS circuitry is key to
creating energy efficient designs. CMOS dissipates energy in
three different ways. First, there is static dissipation, which is
caused by leakage current. Static power is typically caused by
source to drain current when the transistor is turned off and
can be described by the simple voltage times current equation:

P= V*Ileak (1)

The second type of energy consumption is switching power,
given by the following formula:

P =(1/2) % Clpqa * f x V? (2)

Cloaq 1s the capacitance the transistors must drive and is
made up of wire and gate capacitance. The frequency, f,
is the rate at which the transistor switches and depends on
switching activity information. The third type of power in
CMOS technology is often referred to as internal power and
is given by the following formula:

P =((1/2) % Ciny * V25 f) + (V % L) (3)

Internal power incorporates the charging of capacitances
within a gate and the short circuit current which exists between
the type N and P transistors during a logic state transition.

Well defined techniques exist to perform the above com-
putations and one such set of techniques is described in the
methodology section (IV) of this paper.

III. A PARAMETERIZABLE MICROARCHITECTURE

This section of the paper discusses the design of a custom
microarchitecture for computing modular arithmetic. The in-
tent of the design is to accelerate the underlying mathematics
required for ECC. In order to fully explore the design space
associated with this sort of acceleration hardware, the HDL
code has been written such that the width of the data path
and the size of internally addressable memory can be adjusted
prior to logic synthesis. Other design parameters such as the
size of the microprogram can be adjusted as well. However,
for the analysis provided in this paper, those design parameters
are held constant unless stated otherwise.

A. Hardware Design

The microarchitecture depicted in Figure 1 is capable of
executing the CIOS algorithm discussed in Section II along
with modular addition and subtraction. From here on, the top
level design will be referred to as the Finite Field Arithmetic
Unit (FFAU). The CIOS algorithm consists of two nested for-
loops. The first loop computes the following:

=t4+axB

Address Generation

—

AB_Memory

Y ¢ I
A B c
Control
Arithmetic Core Unit

Tmp_Reg

{

T_Memory

L

Address Generation

Fig. 1. Top Level Architecture of the FFAU

such that ¢ is a vector with a word length of £ + 2, a is a
vector with a word length of &k, and B is of unity word length
and part of b, a vector the same size as a. Note that if [is
the bit length of the finite field elements (i.e. 192, 256, or
384) and w is the bit width of the datapath, then k = [/w.
For example, if we want to process 192-bit integers (minimal
security) with a 32-bit datapath, then each integer, a and b,
will be represented by & = 6 words. The second inner loop
computes the following:

t=t+mxn

such that ¢ is as previously defined and n is a vector of k
words. m is a single word value computed just prior to its use
on every iteration of the outer loop. In short, the computation
in each of the inner loops involves a multiplication of a vector
by a scalar and the addition of a another vector.

At the center of the FFAU is the arithmetic core. It is capable
of clocking in three w-bit operands and clocking out one w-
bit result on every clock cycle. For the current design, the
arithmetic core has two pipeline stages and uses parallel array
multiplication and Carry Save Adder (CSA) row reduction
techniques. While it achieves a throughput of one operation
per clock cycle, each operation has a latency of three cycles.
Table I reveals a subset of the operations the arithmetic core
is capable of performing.

Note that Result is the lower w bits of the computation and
Carry is the remaining upper w bits of the computation. The
arithmetic core is self draining in the sense that control bits
from the control unit in addition to the store address for the
corresponding result propagate through the pipeline along with
the operand data. This greatly simplifies the required control
logic.

The key to an efficient design is near 100% utilization of
the arithmetic core. In order to avoid pipeline stalls, three w-
bit operands must be fetched from internal scratchpad RAM
while one w-bit result is stored on every clock cycle. To
allow for the use of dual port RAMs, the memory within the
FFAU is split into two memory modules. The AB memory
holds the a, b, and n integers, while the T memory holds the
intermediate result, ¢. Since the AB memory must hold three

[Multiply-Add

(Carry, Result) < A+ B

(Carry, Result) <= A% B+ C

(Carry, Result) < Ax B+ C + Carry

[Add-Subtract

(Carry, Result) < A+ B

(Carry, Result) < A+ B+ C

(Carry, Result) < A+ B+ C + Carry

(Carry, Result) <= —A+ B

(Carry, Result) <= —A+ B+ C

(Carry, Result) <= —A+ B+ C + Carry
Clear Pipe

(Carry, Result) <= C + Carry

(Carry, Result) < Carry

TABLE 1
ARITHMETIC CORE COMPUTATIONAL CAPABILITIES

k-word integers, the minimum size of the AB memory is 3k
words. For design simplicity and future expansion, both the
AB and T memories were designed to be 4k deep. It should
be noted that this liberal use of memory will only slightly
exaggerate the energy consumption of the FFAU, but for future
work, the memory size will be re-examined. The AB memory
requires two read ports, and at least one of those ports must
support write operations in order to load the input data. The
T memory module requires only one read port and one write
port for the internal FFAU architecture.

Result data from the arithmetic core can be stored in either
the T memory or a temporary result register. Part of the control
data which propagates with the computation is the write-enable
signal for the T memory module and the load signal for the
temporary result register. The A input to the arithmetic core is
multiplexed to allow input from either the AB memory module
or the temporary result register. The temporary result register
is necessary to avoid a structural hazard that would otherwise
exist during the reduction step of the CIOS algorithm when
computing ¢t = t + m x n. Consequently, m is stored in the
temporary result register during reduction, thereby allowing
the architecture to simultaneously access m and t. As with
the A input, the B input of the arithmetic core is multiplexed,
enabling multiplication by a value from an 8-entry, microcode
selectable RAM module within the control unit. For the
calculation of m, a constant must be pre-loaded into the
constant RAM.

The address generation logic is responsible for addressing
the read ports for both memory modules. An index register
is dedicated to each read port and can be independently
controlled using the binary codes found in Table II. The width
of the index registers is determined by the depth of the RAM
modules, i.e. log(4k), and is automatically set prior to logic
synthesis. The constant bus referenced in the table is fed by
the constant RAM module within the control unit. The write
port on the T memory module is addressable only by the store
address pipeline within the arithmetic core. The store address
along with the control data latched into the arithmetic core on
every clock cycle is supplied by the control unit.

The FFAU control unit, depicted in Figure 2, is a simple
microcoded state machine. It has two additional index registers
for handling nested loops, a small RAM for holding constants,

[Code | Operation | Description |
00 Hold no change to value
01 [reg]<—const_bus | load register with value on constant bus
10 [reg]<— O clear register value
11 [reg]<— [reg]+1 increment register value

TABLE 11
INDEX REGISTER CONTROL CODES

3

cmb_bus Command

Reqister

Present State Register
b

Return Address Register
b

Microcode Memory
k 1 Index Register

ConstantRAM | %

Compare T

Logic const_bus

E J Index Register

Fig. 2. The Control Unit within the FFAU

ol

ﬂ{ Command
T\ Decoder.

3 Branch
——| Decode Logic

input_bits

2

ctrl_bus

Compare Register

Cil.

log2(4k)

index_)

config_addr(3), config_data(w), config_wr_en

a return address register for simple subroutines, and a com-
mand decoder ROM for supporting multiple operations. The
control unit is also capable of making branch decisions within
a microprogram based on signals from the datapath. As seen
in Figure 2, the CIOS algorithm requires a minimal amount
of decision logic. Currently, the microcode ROM is 64 entries
deep, which was more than enough to implement the CIOS
algorithm, along with modular addition and subtraction.

B. Design Tradeoffs

Even though this study was tailored for energy efficient
finite field arithmetic acceleration, many of the lessons learned
here can be applied to the acceleration of other algorithms.
During the design phase, a number tradeoffs were encountered.
Among the most obvious is the tradeoff between reconfigura-
bility and efficiency. Clearly, these are two conflicting design
goals. As more logic is added to the design to support a wider
variety of algorithms, the amount of logic being effectively
utilized for a given algorithm decreases. If the accelerator
is being tuned for a specific algorithm, one would want to
provide just enough reconfigurability in the design to allow
for a certain amount of scalability and not much more. After
all, if reconfigurability is the primary design objective, the sole
use of a general purpose processor should be considered.

To accommodate expansion and dynamic configuration of
key size, i.e. the size of the underlying finite field, the FFAU
pulls array bounds from the constant RAM within the control
unit. For this design, the use of microprogramming over
hardcoding the control unit is preferred in order to improve
reconfigurability and reduce control unit complexity. In this

case, the control complexity is moved into the microprogram;
however, a good microcode assembler can help improve the
situation. It should be noted that combining a microcoded
control unit with a constant RAM allows for two levels of
reconfigurability in addition to reducing the cost associated
with the control store.

Scalability verses efficiency is another tradeoff encountered
in this study. Consequently, the FFAU is only scalable up to a
certain point determined by the size of scratch memories. The
approach for determining memory size taken here is to look at
the largest practical problem size this device might be used for.
Unfortunately for cryptographic applications, the problem size
grows as new attack algorithms are developed. A complexity
verses performance tradeoff exists when considering the use
of the temporary result register mentioned in Section III. At
the cost of additional multiplexing logic and a control signal,
a structural hazard is avoided, thereby reducing potential
pipeline stalls. It should be noted that another solution to
the aforementioned structural hazard is to add a third port
to the AB memory; however, this could negatively effect the
scalability of the design.

The aforementioned tradeoffs were discussed somewhat
independent of the algorithm complexity. However, when con-
sidering area verses performance, it is beneficial to examine
the computation time in terms of input size. For example, the
number of clock cycles required to complete a CIOS operation
on the FFAU is as follows:

cc=2k* + 6k + (k+ 1)p + 22 (4)

where k is as defined in part A of this section, and p is the
latency of an arithmetic core operation and is directly related to
the depth of the pipeline. The examination of the complexity
equation above revealed to us the portions of the algorithm
where a larger investment in terms of logic should be made.
Optimizations that reduce the coefficients of higher ordered
terms in the complexity polynomial should be prioritized for
both energy efficiency and performance. Hence to reduce the
coefficient of the quadratic term, the FFAU has logic for
scratchpad address generation that is separate from that of
the actual computation. Likewise, the memories are organized
such that three operands can be fetched at once, rather than
stalling while waiting for a third operand to be fetched from
memory.

Another interesting tradeoff that is quantified in (4) is clock
rate verses pipeline depth. In this preliminary study, this trade-
off was not really considered; instead, a depth which provided
a reasonable clock rate without much logic optimization effort
was chosen. However, assuming an ideal increase in clock rate
due to pipelining, it is fairly straight forward to calculate an
optimal pipeline depth for the FFAU using (4). Obviously, the
effect p has on performance will be algorithm specific. In this
situation, there is a data dependency within the outer loop of
the CIOS algorithm that requires a pipeline stall, hence the
coefficient, k. The +1 comes from the fact that the pipeline
must drain before the final result is available. It should be
noted that the data dependency could be removed at the cost
of microcode complexity.

IV. METHODOLOGY

The previous section introduced the microarchitecture of the
FFAU. This section will now discuss the pre and post synthesis
evaluation of the design. Since memories are generally not
synthesized directly, the test bench contains the AB and T
memories. The constant RAM is on the order of a small
register file and thus is implemented in logic. The estimation
of energy consumed by the logic portion of the FFAU was
completed entirely within the Synopsys tool chain. Synthesis
is performed using the Synopsys HDL Compiler to a 45nm
technology library. The Verilog Compiler Simulator (VCS) is
used for both pre and post synthesis verification in addition
to creating stimulus activity files for use in power estimation.
Finally, average power estimation for synthesized logic was
performed with PrimeTime PX using switching activity infor-
mation contained within the stimulus files [19], [22].

While Synopsys provides a means for estimating average
power for the logic portion of the design, the average power
for the memories within the design are estimated using Cacti,
a timing, power and area model for caches and simple RAM
blocks [18]. Total average power estimations of each variant of
the design coupled with the time required per operation taken
from simulation were used to compute the energy required per
operation.

To compare the design provided in this work with ex-
isting software solutions, average power estimations for an
ARM Cortex-M3 were made using the STMicroelectronics
STM32F2xx series datasheet, which provides the average
current draw of the processor with all peripherals turned off
for various clock rates [20]. The STM32F2xx series utilizes
a leading-edge 90nm standard cell library and operates at a
higher clock rate relative to other ultra-low power micropro-
cessors on the market today, making it a closer match to our
design. To make a more fair comparison, the datasheet power
estimations are scaled to the 45nm process technology using
the following methodology. Assuming dynamic power is the
dominate factor for energy consumption in the processor and
capacitance is proportional to the feature size of the process
technology, the following formula can be utilized to scale from
process a to process b:

scaleqrop = (sizey/sizeq) * (Vy/Vay)? 5)

For the above equation, size, and size, represent the
feature size of technology a and b respectively, and V,, and V
are the supply voltages for technology a and b respectively.

Energy per operation for code executing on an ARM Cortex-
M3 is estimated using the aforementioned power calculation
along with execution time per operation. We used a clock cycle
accurate ARM Cortex-M3 simulator built into Texas Instru-
ment’s Code Composer Studio v4 (CCStudio v4) Integrated
Development Environment (IDE) to determine execution time
in cycles.

V. RESULTS

This section of the paper provides the results of our study.
To demonstrate the energy efficiency of this design, average

power and execution time to perform Montgomery multipli-
cation for key sizes of 192-bit, 256-bit, and 384-bit were
recorded. All of the results from our hardware assumes a
100 MHz clock and 0.9V supply voltage. Table III provides a
breakdown of the average static and dynamic power consumed
by the 8-bit, 16-bit, 32-bit, and 64-bit variants of our design
for each of the Montgomery multiplications. In all cases,
the dynamic energy is the dominate component in average
power. This is primarily due to the small memories and high
utilization of the arithmetic logic. The leakage power provides
us some insight into how much power will be consumed if
power gating is not utilized while the FFAU is idle.

Datapath Width [Area(cell units) [Static Power | Dynamic Power

Key Size: 192-bit

8-bit 2,091 32.3 uW 166.2 W

16-bit 4,244 59.3 uW 311.9 uW

32-bit 11,329 159.1 uW 659.9 W

64-bit 36,582 530.6 uW 1,472.7 uW
Key Size: 256-bit

8-bit 2,091 34.0 uW 186.2 uW

16-bit 4,244 61.6 W 310.2 uW

32-bit 11,327 161.4 uW 684.4 W

64-bit 36,582 532.9 uW 1,613.4 pW
Key Size: 384-bit

8-bit 2,168 354 pW 197.1 W

16-bit 4,322 65.0 uW 321.6 uW

32-bit 11,405 164.3 uW 888.5 uW

64-bit 36,664 535.7 uW 1,686.5 uW

TABLE III

AREA UTILIZATION, STATIC POWER, AND DYNAMIC POWER VS.
DATAPATH WIDTH

Table IV provides the total average power along with
execution time and energy per Montgomery multiplication
with respect to the datapath width. When comparing integer
key sizes from smallest to largest, we note that average power
only increases slightly, whereas the computation time increases
quadratically. The increase in average power is mainly due to
a linear increase in memory, which accounts for an increase in
leakage power. The significant increase in computation time is
due to the O(n?) nature of the multiplication operation. When
comparing datapath bit widths of the FFAU, the average power
increases less than quadratically as the datapath width doubles.
The net result is that the energy per CIOS operation tends to
decrease as the datapath width increases. To demonstrate this,
Figure 3 charts the amount of energy consumed per 192-bit,
256-bit, and 384-bit operation for each of the variants of the
FFAU. Due to the fact that the CIOS algorithm is not perfectly
quadratic, the decrease in energy consumed per operation does
not continue. As can be seen for the 192-bit key case with a
32-bit datapath, at some point increasing the datapath width
starts to increase the energy consumed, leading to an optimal
datapath width in terms of energy for a given key size. We
believe this trend continues for larger key sizes; however, the
optimal datapath width is higher than or equal to 64-bits.

From the results above, it becomes clear that an algorithm
with a O(n?) time complexity tends to favor a larger datapath
when considering energy efficiency, while the energy effi-
ciency of a O(n) algorithm will not be significantly affected by
datapath size. Moreover, for an algorithm exhibiting a O(1)

behavior, a decrease in datapath size will yield an increase
in energy efficiency. The latter observation is quite obvious
considering the constant portion of the time complexity equa-
tion represents the serial bottle neck within the algorithm.
For our study, the time complexity has a fairly large constant
coefficient which is a result of the dynamic configuration of
the FFAU at which time the arithmetic logic lies idle.

In order to provide some insight into the relative energy
efficiency of the FFAU, Figure 3 also includes the energy per
operation estimations for the ARM Cortex-M3 operating at
100 MHz with a 0.9V supply voltage. Table V lists the energy
estimations for the ARM processor since they extend beyond
the scale of the graph in Figure 3. In terms of performance, the
FFAU on average yields a 10x improvement over the ARM.

Width [Average Power | Ex. Time [Energy
Key Size: 192-bit
8-bit 198.5 uW 13,920 ns 2.763 nJ
16-bit 371.2 uW 4,220 ns 1.566 nJ
32-bit 819.0 uW 1,520 ns 1.245 nJ
64-bit 2,004.3 uW 710 ns 1.423 nJ
Key Size: 256-bit
8-bit 220.2 W 23,510 ns 5.176 nJ
16-bit 371.8 uW 6,710 ns 2.495 nJ
32-bit 845.7 uW 2,150 ns 1.818 nJ
64-bit 2,146.3 uW 830 ns 1.782 nJ
Key Size: 384-bit
8-bit 232.5 pW 50,550 ns | 11.755 nJ
16-bit 386.6 uW 13,830 ns 5.347 nJ
32-bit 888.5 uW 4,110 ns 3.652 nJ
64-bit 2,222.3 uW 1,410 ns 3.133 nJ
TABLE IV

AVERAGE POWER, EXECUTION TIME, AND ENERGY PER OP VS.
DATAPATH WIDTH

Key Size | Ex. Time | Average Power Energy
192-bit 13,870 ns 4,500 pW 62.4 nJ
256-bit 23,010 ns 4,500 pW 103.6 nJ
384-bit 48,530 ns 4,500 pW 218.4 nJ

TABLE V
AVERAGE POWER AND ENERGY PER OP VS. KEY SIZE (ARM
CORTEX-M3)
103.6
62.4 218.4
20 4 N A
15 |
c [0 192-bit
> 104 W 256-bit
o [384-bit
@
C
w
5 -
0+ =
8-bit 16-bit 32-bit 64-bit ARM
Architecture
Fig. 3. Energy per Montgomery Multiplication vs. Architecture

VI. PREVIOUS WORK

The work discussed in this paper is loosely based off of our
prior work performed for Sandia National Laboratories (SNL)

[21]. The development in this paper is intended to target a low
power ASIC or custom processor design, whereas the work for
SNL targeted an FPGA.

Much effort has been dedicated to achieving significant
acceleration using hardware in FPGA and ASIC designs.
However, only a few publications seem to address the energy
consumption aspect of public key cryptography for embedded
devices. In order for public key cryptography to be viable
in extremely low power applications such as RFIDs, a better
understanding of the energy cost associated with asymmet-
ric encryption in both hardware and software is necessary.
Wander et al. compare the energy cost of 1024-bit RSA
with that of 160-bit ECC to show that 160-bit ECC saves
a significant amount of energy when executed on an 8-bit
Atmel ATmegal28L microprocessor. The results showed that
based on an assumed battery life, the device using ECC could
execute 4.2 times the number of key exchange operations [23].
Naturally, this is a very compelling argument for using elliptic
curves instead of modular exponentiation based cryptosystems.

Keller et al. have examined the public key energy consump-
tion for FPGAs. First, the design of an entire asymmetric
cryptographic processor is explained. Then, the design is
implemented on an Xilinx Spartan 3E FPGA, and it is char-
acterized in terms of its energy consumption. The processor is
capable of utilizing binary or prime finite fields. For prime
field mathematics, the authors used 192-bit integers, while
for binary mathematics, 163-bit polynomials were used. For
energy consumption characterization, the authors kept the bit
lengths the same but made various algorithmic changes. What
they found was that the power consumption of the FPGA
remained quite constant throughout their experimentation, and
thus, the speed of the operation had more bearing on energy
consumption. The system configuration which performs the
fastest ends up yielding the more energy efficient design [10].

Goodman et al. compared public key cryptographic op-
erations on a domain-specific reconfigurable cryptographic
processor (DSRCP) with previously reported FPGA imple-
mentations and a software only implementation on a stron-
gARM. The DSRCP was implemented in a 0.25 pm processes
technology, and the energy consumption numbers were true
measurements. The authors report orders of magnitude lower
energy consumption for the DSRCP in comparison to the
software and FPGA implementations. They claim the DSRCP
is just as reconfigurable as software, yet they only consume
half the energy of previously reported non-reconfigurable
hardware solutions [7].

VII. CONCLUSION

This paper provides a unique microarchitecture for comput-
ing prime finite field arithmetic. The FFAU is a parametrizable
architecture such that the datapath width and maximum integer
width can be set prior to logic synthesis. The design is
simulated and synthesized in order to verify correctness and
estimate the energy required for Montgomery multiplication of
key sizes from 192-bit to 384-bit. Moreoever, we have shown
that the majority of the time for an ECC scalar point multipli-
cation is spent in the modular multiplication operation. Thus,

optimizing a design for modular multiplication is quite useful.
The CIOS algorithm, however, is not perfectly quadratic; thus,
depending on the size of integers being computed, there is a
sweet spot where energy consumption is minimized.

Figure 3 demonstrates a sweet spot for energy efficiency
at a 32-bit datapath width for a 192-bit computation. As the
computation size increases, it should be noted that the graph
appears to shift towards the larger datapath widths. With 256-
bit math, the 64-bit width appears to be optimal. Expanding
our results might show that a 128-bit datapath would provide
optimal energy efficiency for 384-bit security. Likewise, we
expect an examination of 160-bit integer computation would
show the 16-bit datapath to be optimal in terms of energy.
Another conclusion seen here is that the choice to utilize an
8-bit microprocessor over a 32-bit microprocessor for energy
efficiency reasons may not be the best one, despite the lower
power utilization.

The results provided in this paper also shed some light on
how much additional security can cost in terms of energy.
These are important considerations that should be taken into
account early on in the design phase. Obviously, the required
security has a large influence on the amount of energy a
device will consume. If a particular device does not have
an energy budget large enough to support pure software
based encryption, other alternatives, such as the hardware
acceleration shown here, exist.

For future work, it would be interesting to compare the
energy consumption of this work with that of a large bit serial
multiplier. Additionally, the FFAU should be included in a
larger system capable of computing complete ECC algorithms
for a true estimation on the energy cost of security.

VIII. ACKNOWLEDGMENTS

We would like to thank Boris Grot and Hyungjun Kim for
their contributions to this paper.

REFERENCES

[1] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Ver-
bauwhede, “Public-Key Cryptography for RFID-Tags,” Proceedings of
the Fifth IEEE International Conference on Pervasive Computing and
Communications Workshops, .pp 217-222, 2007.

[2] M. Brown, D. Hankerson, J. Loépez, A. Menezes, ‘“Software
Implementation of the NIST Elliptic Curves Over Prime Fields,”
Topics in Cryptography - CT-RSA 2001, LNCS, vol. 2020, pp. 250-265.

[3] H. Cohen, A. Miyaji, T. Ono, “Efficient elliptic curve
exponentiation using mixed coordinates,” Advances in Cryptography:
ASIACRYPT’98, vol. 1514, pp. 51-65.

[4] A. Daly, W. Marnane, T. Kerins, E. Popovici, “An FPGA implementation
of a GF(p) ALU for encryption processors,” Microprocessors and
Microsystems, vol. 28, pp. 253-260, 2004.

[5] W. Diffie and M. E. Hellman, “New Directions in Cryptography,”
IEEE Transactions on Information Theory, vol. 1T-22, no. 6, pp. 644-
654, 1976.

[6] G. Gaubatz, J. Kaps, E. Oztiirk, B. Sunar, “State of the Art in Ultra-
Low Power Public Key Cryptography for Wireless Sensor Networks,”
Third IEEE International Conference on Pervasive Computing and
Communications Workshops, pp. 146-150, 2005.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

J. Goodman, A.P. Chandrakassan, “An Energy-Efficient Reconfigurable
Public-Key Cryptography Processor,” IEEE Journal of Solid-state
Circuits, vol. 36, no. 11, 2001.

D. Hankerson, J. Hernandez, A. Menezes, “Software Implementation
of Elliptic Curve Cryptography over Binary Fields,” Cryptographic
Hardware and Embedded System:CHES 2000, LNCS, vol. 1965, pp. 1-
24,

D. Johnson, A. Menezes, S. Vanstone,“The Elliptic Curve Digital
Signature Algorithm (ECDSA),” Technical report CORR 99-34, Dept.
of C&O, University of Waterloo, 1999.

M. Keller, A. Byrne, W. P. Marnane, “Elliptic Curve Cryptography on
FPGA for Low-Power Applications,” ACM Transactions on Reconfig-
urable Technology and Systems, vol. 2, no. 1, 2009.
N. Koblitz, ”Elliptic Curve Cryptosystems,”
Computation, vol. 48, no. 177, .pp 203-209, 1987.

Mathematics of

CK. Kog, T. Acar, and B.S. Kaliski
Comparing ~ Montgomery Multiplication
Micro, vol. 16, no. 3, pp. 26-33, 1996.

and
IEEE

Jr.,“Analyzing
Algorithms,”

A. Menezes, P.C. van Oorschot, S.A. Vanstone,Handbook of Applied
Cryptography, CRC Press, 1997.

V.S. Miller, “Use of Elliptic Curves in Cryptography,” Advances in
Cryptography, LNCS, pp. 417-426, 1986.

PL. Montgomery, “Modular Multiplication Without Trial Division,”
Mathematics of Computation, vol.44, no. 170, pp. 519-521, 1985.

D. Naccache and D. M’Raihi, “Cryptographic Smart Cards,” [EEE
Micro, vol. 16, no. 3, pp.14-24, 1996.

R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120-126, 1978.

P. Shivakumar N.P. Jouppi, “CACTI 3.0: An Integrated Cache Timing,
Power, and Area Model,” Compaq: Western Reaserch Laboratory, 2001.

Synopsys, Expanding the Synopsys Prime Time Solution with Power
Analysis, online resource,
http://www.synopsys.com/Tools/Implementation/SignOff/
CapsuleModule/ptpx_wp.pdf, 2006.

STMicroelectronics, STM32F215xx Datasheet, onlie resource,
http://www.st.com/internet/com/TECHNICAL_RESOURCES/
TECHNICAL_LITERATURE/DATASHEET/CD00263874.pdf
November, 2010.

A.D. Targhetta, “Elliptic Curve Cryptographic Acceleration Unit,”
Sandia National Laboratories, SAND2010-2697, available upon
request, May 2010.

Virginia Tech, “Synopsys Tutorial: Power Estimation,” online resource,

http://computing.ece.vt.edu/wiki/Synopsys_Tutorial
:_Power_Estimation, 2008.

A.S. Wander, N. Gura, H. Eberle, V. Gupta, S.C. Shantz, “Energy
Analysis of Public-Key Cryptography for Wireless Sensor Networks,”
IEEE International Conference on Pervasive Computing and Communi-
cations, vol. 0, pp. 324-328, 2005.

