Inconsistency Management for Traffic Regulations

Harald Beck Thomas Eiter Thomas Krennwallner

KBS Group, Institute of Information Systems, Vienna University of Technology

AAAI’12 Workshop on Semantic Cities
July 23, 2012
Inconsistency Management for Traffic Regulations

- **Traffic regulation**: Legal document, describing how road usage can be restricted (for reasons of safety, trafficability, ...)

- **Traffic measures** describe what *shall* be restricted

- **Traffic signs** (and road markings) describe what *is* restricted

- Measures and signs are two different “languages” for the description of restrictions, which shall correspond

- E.g.: Speed limit, parking ban, residential area, pedestrian zone, motorway, one way streets, mandatory turns,...
Example: Inconsistent traffic sign posting

Scenario: Speed limit measure of 30 mph from v_2 to y_2 (→→)

correct sign posting
Example: Inconsistent traffic sign posting

Scenario: Speed limit measure of 30 mph from v_2 to y_2 (→→)

Inconsistencies:
- no end sign at y_1
- speed limit ending at y_2 does not start
Example: Loop

Scenario: Four mandatory left turns cause a loop
Traffic regulation data management

- Industrial project at PRISMA solutions GmbH
 (http://www.prisma-solutions.at): Web app for administration of traffic measures/signs on a digital street map
- Government officials collect data, store and visualize
Traffic regulation data management

- Industrial project at PRISMA solutions GmbH (http://www.prisma-solutions.at): Web app for administration of traffic measures/signs on a digital street map
- Government officials collect data, store and visualize...
Traffic regulation data management

▶ Industrial project at PRISMA solutions GmbH (http://www.prisma-solutions.at): Web app for administration of traffic measures/signs on a digital street map

▶ Government officials collect data, store and visualize
Traffic regulation data management

▶ Industrial project at PRISMA solutions GmbH (http://www.prisma-solutions.at): Web app for administration of traffic measures/signs on a digital street map

▶ Government officials collect data, store and visualize
Traffic regulation data management

▶ Industrial project at PRISMA solutions GmbH (http://www.prisma-solutions.at): Web app for administration of traffic measures/signs on a digital street map

▶ Government officials collect data, store and visualize
Traffic regulation data management

- Industrial project at PRISMA solutions GmbH (http://www.prisma-solutions.at): Web app for administration of traffic measures/signs on a digital street map

- Government officials collect data, store and visualize
Traffic regulation data management

- Industrial project at PRISMA solutions GmbH
 (http://www.prisma-solutions.at): Web app for administration of traffic measures/signs on a digital street map
- Government officials collect data, store and visualize
- Status quo: system users detect faults manually
- Problems: legal issues, errors in data acquisition
- Goal: provide assistance w.r.t. consistency-related problems (detect, diagnose and repair inconsistencies)
Traffic regulation data management (ctd.)

- Logic-based approach for street maps (labeled, directed graphs)
 - logical formulas for expressing traffic regulation specifications
 - Represent measures and signs by edge/node labels
 - Translate into “effects” (i.e., a common language)
 - Evaluate by additional formulas, potentially creating “conflicts”
 - Inconsistency, if a conflicts can be derived
- Leave open which logic is used

T. Krennwallner (Vienna UT) Inconsistency Mgmt. for Traffic Regulations Semantic Cities @ AAAI’12
Traffic Regulation: Informal questions

- **Consistency**: Given a set of measures and/or signs on a street, are they *consistent* (w.r.t. the traffic regulation)?

- **Correspondence**: Do measures and signs express the same “effects,” i.e., are the restrictions described by measures properly materialized by the traffic signs?

- **Diagnosis**: Which minimal set of measures/signs explain inconsistency or non-correspondence?

- **Repair**: Which minimal changes to the scenario can resolve these problems?
High-level approach

- **Scenario** $Sc = (G, M, S)$, using atoms over a logic \mathcal{L}:
 - Directed, labeled graph G, representing street map
 - Set of atoms: measures M and signs S, using nodes from G
 - Input $I = M \cup S$

- Traffic regulatory specification split up into two sets of logical formulas, applied in two steps:
 - (i) **Effect mapping**: from signs and measures to effects F
 - (ii) **Conflict specification**: from effects to conflicts C

- Intuitively: $(G, I) \xrightarrow{(i)} (G, F) \xrightarrow{(ii)} (G, C)$

- \Rightarrow Basis for definition of reasoning tasks
Street map, Effects, and Conflicts

- Edge direction: possible direction of traffic
- Edge labels: *left* and *right* (turn), *straight*, *u-turn*, *lane*
- Represented as atoms, e.g., \(e(\text{left}, x, y) \)
- Map measures and signs to a “common target language” of effects \(f \) (e.g., first-order logic)

Example (Effects and Conflicts)

- speed limit measure of \(k \) mph on edge \((x, y)\) \(\mapsto\) maximal allowed speed \(k \) mph: \(\forall k, x, y . m(spl(k), x, y) \supset f(maxspeed(k), x, y) \)

- \(k \) mph start sign on node \(x \) \(\mapsto\) maximal allowed speed \(k \) mph on next lane: \(\forall k, x, y . s(spl\text{-start}(k), x) \land e(lane, x, y) \supset f(maxspeed(k), x, y) \)

- conflicts are defined by mapping effects to conflicts:
 \(\forall k, j, x, y . f(maxspeed(k), x, y) \land f(maxspeed(j), x, y) \land k \neq j \supset c(\text{ambig-max-speed}, x, y) \)
Mappings: Effects & Conflicts

- Let \mathcal{L} be a predicate logic, X and Y sets of ground atoms

- Closed world operator on X relative to (implicit) base set $Y \supseteq X$:
 \[
 \overline{X} = X \cup \{ \neg x \mid x \in Y \setminus X \}.
 \]

- The Y-consequences of theory T and X (on G) is the set of atoms
 \[
 Cn_G(T, X, Y) = \{ y \in Y \mid T \cup \overline{G} \cup \overline{X} \models y \}.
 \]

- We make two (sequential) applications of this operator to obtain
 - effects from measures and signs, and then, in case of inconsistency,
 - conflicts from effects
Mappings: Effects & Conflicts (ctd.)

Recall: \(Cn_G(T, X, Y) = \{ y \in Y \mid T \cup \overline{G} \cup \overline{X} \models y \} \)

\(I_G/F_G/C_G \): set of all possible inputs (measures & signs)/effects/conflicts

Definition (Effects)

An **effect mapping** is a set \(P \) of formulas over \(\mathcal{L} \) that associates with each input \(I \subseteq I_G \) on a street map \(G \) the set

\[
\mathcal{F}^P_G(I) = Cn_G(P, I, F_G)
\]

of atoms, called **effects of** \(I \) **(on** \(G \) **).**

Definition (Conflicts)

A **conflict specification** over an effect mapping \(P \) is a set \(Sp \) of formulas over \(\mathcal{L} \) that associates with each input \(I \subseteq I_G \) on a street map \(G \) the set

\[
C_G^{P,Sp}(I) = Cn_G(Sp, \mathcal{F}^P_G(I), C_G)
\]

of atoms, called **conflicts of** \(I \) **(on** \(G \) **).**
Traffic Regulation Problems and Consistency

Definition (Traffic Regulation Problem)

Let Sp be a conflict specification over an effect mapping P, and $Sc = (G, M, S)$ be a scenario. Then, the pair $\Pi = (Sp, P)$ is called a traffic regulation and the pair $T = (\Pi, Sc)$ a traffic regulation problem.

Definition (Conflicts/Consistency of Traffic Regulation Problems)

The conflicts $C(T)$ of a traffic regulation problem T are defined as the set of conflict atoms derived by the subsequent application of these two mappings on its scenario, i.e., $C(T) = C_{G,Sp}(I)$. If $C(T) \neq \emptyset$, we call T inconsistent.

Reasoning task CONS

Decide whether a given traffic regulation problem T is consistent.
Diagnosis

Definition (Diagnosis)

Given a set of conflicts $C \subseteq C(T)$, a diagnosis for C is a (minimal) set $J \subseteq I$, s.t. $C \subseteq C_G^{P,Sp}(J)$.

Reasoning task UMINDIAG

Decide whether conflicts $C \subseteq C(T)$ have a unique \subseteq-minimal diagnosis.

Example

The measure (\rightarrow) assigned to the edge (y_1, y_2) is the diagnosis of the conflict at y_1 (no 30 kmph start sign at y_1).
Correspondence

Definition

A set of measures M and a set of signs S correspond wrt. P and G, if $F_P^G(M) = F_P^G(S)$, i.e., if the effects of M and S on G coincide.

Reasoning task CORR

Given M and S, decide whether $F_P^G(M) = F_P^G(S)$, i.e., whether

Repair

Recall: $I = M \cup S$, I_G are all possible measures and signs on G

Definition

A repair for an inconsistent \mathcal{T} is a pair (I^-, I^+), where

- $I^- \subseteq I$
- $I^+ \subseteq I_G \setminus I$
- $C_{G}^{P,Sp}((I \setminus I^-) \cup I^+) = \emptyset$.

That is, (I^-, I^+) is a repair, if the scenario obtained by deleting measures/signs I^- and adding I^+ is consistent.

Reasoning task REPAIR

Decide for a given (inconsistent) \mathcal{T} whether some admissible repair exists, i.e., some $I^+, I^- \subseteq I_G$ s.t. $C_{G}^{P,Sp}((I \setminus I^-) \cup I^+) = \emptyset$ and a poly-time admissibility predicate $\mathcal{A}(I^+, I^-)$ holds.
Complexity of Reasoning Tasks

<table>
<thead>
<tr>
<th>Logic \mathcal{L}</th>
<th>IMPL</th>
<th>CONS</th>
<th>CORR</th>
<th>UMinDiag</th>
<th>REPAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO+DCA</td>
<td>co-NExp / PSpace</td>
<td></td>
<td></td>
<td>$P_{np}^\text{Exp} / \text{PSpace}$</td>
<td>$\text{NP}_{np}^\text{Exp} / \text{PSpace}$</td>
</tr>
<tr>
<td>ASP$^\neg_s$</td>
<td>Exp / P_{np}</td>
<td>Exp / P_{np}</td>
<td></td>
<td>Exp / in $P_{\Sigma_p^2}$, Π_p^2-hard</td>
<td>Exp / Σ_p^2</td>
</tr>
<tr>
<td>ASP$^\neg$</td>
<td>co-NExp / Π_p^2</td>
<td>$P_{np}^\text{Exp} / \text{P}_{\Sigma_p^2}$</td>
<td></td>
<td>$P_{np}^\text{Exp} / \text{in} P_{\Sigma_p^3}$, Π_p^3-hard</td>
<td>$\text{NP}_{np}^\text{Exp} / \Sigma_p^3$</td>
</tr>
<tr>
<td>ASP$^\lor,\neg$</td>
<td>co-NExp$^\text{NP}$ / Π_p^3</td>
<td>$P_{np}^\text{Exp}^\text{NP} / \text{P}_{\Sigma_p^3}$</td>
<td></td>
<td>$P_{np}^\text{Exp}^\text{NP} / \text{in} P_{\Sigma_p^4}$, Π_p^4-hard</td>
<td>$\text{NP}_{np}^\text{Exp}^\text{NP} / \Sigma_p^4$</td>
</tr>
</tbody>
</table>

Legenda: general case / bounded predicate arities (unless stated otherwise, entries are completeness results)

- **IMPL**: Known logical entailment complexities
- **FO+DCA**: first order logic with domain closure assumption
- **ASP$^\neg_s$**: stratified answer set programs
- **ASP$^\neg$**: normal programs (arbitrary negation)
- **ASP$^\lor,\neg$**: disjunctive programs (arbitrary disjunction and negation)
Implementation of the Reasoning Tasks

- Prototype implementation based on Answer Set Programs, using \texttt{dlv} and \texttt{clasp} as solvers.
- Uniform encoding for all reasoning tasks
- Traffic regulation as sets of rules
- Input: Facts encoding the street graph, traffic measures & signs
- Output: Answer sets that correspond to conflicts/diagnoses/repairs

Example

- Graph: \texttt{edge(right,x2,y1). edge(straight,v3,y1)}.
- Measures: \texttt{m(spl(30),v2,v3). m(motorway,x42,x43)}.
- Signs: \texttt{s(start(spl(30)),v2). s(no_entry,x19)}.
Implementation CONS

- Measure & signs: function symbols \(x \in \{ m, s \} \):
 - input(\(x (...) \)). measure/sign is given as input
 - pool(\(x (...) \)). measure/sign is in pool (for guessing)
 - use(\(x (...) \)). measure/sign is used

- Only the effects of *used* measures & signs are computed

- Reasoning task CONS (via conflict evaluation): use entire input:
 - use(\(x (...) \)) :- input(\(x (...) \)).

- Scenario is consistent iff answer set does not contain a conflict.
Implementation DIAGNOSIS

▶ Guess:

\[
\text{pool}(x(...)) \leftarrow \text{input}(x(...)). \\
\text{use}(x(...)) \lor \neg\text{use}(x(...)) \leftarrow \text{pool}(x(...)).
\]

▶ Modifications:

\[
\text{keep}(x(...)) \leftarrow \text{use}(x(...)), \quad \text{input}(x(...)). \\
\text{del}(x(...)) \leftarrow \neg\text{use}(x(...)), \quad \text{input}(x(...)). \\
\text{add}(x(...)) \leftarrow \text{use}(x(...)), \neg\text{input}(x(...)).
\]

▶ Preferred answer sets w.r.t. an optimization criterion using weak constraints (second rule below)

▶ Diagnosis:

\[
\leftarrow \text{add}(x(...)). \quad \% \text{adding not allowed} \\
\sim \text{keep}(x(...)). \quad \% \text{keep as few as possible}
\]
Implementation REPAIR

▶ A repair shall be able to add new measures and signs

▶ Adding new measures/signs to the pool based on domain knowledge, e.g.,
 ▶ If there is a measure \(m(T, X, Y) \) in the pool, add a start sign at \(X \) and an end sign at \(Y \) to the pool.

\[
\text{pool}(s(\text{start}(T), X)) :- \text{pool}(m(T, X, Y)).
\]
\[
\text{pool}(s(\text{end}(T), Y)) :- \text{pool}(m(T, X, Y)).
\]

▶ Repair (example preference):

\[
\text{:- conf.} \quad \text{% forbid any conflict}
\]
\[
\sim \text{del}(s(T, X)). \quad [1:1] \text{% prefer changes of signs } [:1]
\]
\[
\sim \text{add}(s(T, X)). \quad [2:1] \text{% over measures [:2]},
\]
\[
\sim \text{del}(m(T, X, Y)). \quad [1:2] \text{% then deletions } [1:],
\]
\[
\sim \text{add}(m(T, X, Y)). \quad [2:2] \text{% over additions } [2:].
\]

▶ \text{dlv} optimizes hierarchically: \(\sim \text{<body>} \). [\text{Weight:Level}]
Conclusion

Inconsistency Management for Traffic Regulation

- Introduced traffic regulation problem and relevant reasoning tasks
- Presented logic-based, modular approach
- Complexity results for different logics
- Prototypical implementation using answer set programming

Future work

- Extend existing industrial software using presented features
- Test on real world data, scaling issues
- Consider additional plate information (for whom or when a measure/sign is active)
Diagnosis (Side remark)

Different domain interpretations are reasonable:

- Before the end sign, the speed limit effect is given by measure, but not by a sign.

- Q: Is the end sign ending an effect, i.e., is the conflict “No effect to be ended here?” appropriate at the position of the end sign?

- Modular, declarative implementation needed accounting for this flexibility.
Adjustment & Generation

- Restricted scenarios / restricting repairs lead to special cases, relevant for data imports and merging.
- **Adjustment** of signs, s.t. they correspond with measures. Amounts to finding a repair consisting exclusively of traffic signs. (Recall 30 kmph example.)
- **Generation** of signs from scratch, s.t. they correspond with measures. Corresponds to a repair \((\emptyset, I^+)\) on scenario \((G, M, \emptyset)\), where \(I^+\) consists exclusively of signs.

Example (encoding of special domain knowledge)

- Favor changes in signs over changes in measures
- Favor deletions of linear measures over zones
- Never delete a residential area
- ...
Relationship to Abductive Diagnoses

Abductive diagnosis [Poole, 1989] and [Console and Torasso, 2006].

Definition (Abductive Diagnosis Problem)

An *abductive diagnosis problem (ADP)* is a triple $\langle T, H, O \rangle$, where T is a set of formulas in \mathcal{L}, called the theory, and H and O are sets of literals, called the hypotheses and observations, respectively.

A *(complete)* abductive diagnosis for $\langle T, H, O \rangle$ is a set $A \subseteq H$, such that $T \cup \overline{A} \not\models \bot$ and $T \cup \overline{A} \models O$.

Proposition

Let $C \subseteq C(\mathcal{T})$ and $J \subseteq I$. The effects $\mathcal{F}^P_G(J)$ are an abductive diagnosis for the ADP $\langle Sp \cup \overline{G}, \mathcal{F}^P_G(I), C \rangle$ iff J is a consistent diagnosis of C, i.e., $Sp \cup \overline{G} \cup \overline{\mathcal{F}^P_G(J)} \not\models \bot$.
References I
