Statistical Reliability Modeling of Field Failures Works!

David Trindade, Ph.D.
Distinguished Principal Engineer
Sun Microsystems, Inc.
Agenda

Introduction to Field Reliability Issue
Responding to Field Failures
Data from the Field
Reliability Analysis and Modeling of Field Failures
Analysis Implications
Physical Mechanisms/Remediation/Confirmation
Summary
Introduction

Field Failures in New Servers

In 1999, Sun Microsystems began experiencing a number of field failures in new servers.

The failures were sudden, unexpected, and could cause the system to “panic” (stop running, possibly reboot automatically).

Engineers spent considerable efforts to restore systems to operation and prevent recurrence.

Boards experiencing a failure were replaced with new boards and returned to Sun for analysis.

Extensive data logging of conditions at the time of the failure were recorded and analyzed.

Costs of field repairs escalated.

Customers demanded prompt resolution.
Background on System Boards

Typical system board
- Approximate size is 2’x2’ and weight ~30 lbs.
- Cost ~$100,000 per board
- Connects to chassis via sockets containing thousands of pins

Boards returned for analysis to factory
- Damage in transit was not uncommon.
- After analysis, over 95% of returned boards were classified as no trouble found (NTF). Remaining 5% were often determined to be damaged in transit.
Actions to Identify Cause of Failures

Extensive stressing and testing of new and returned boards in systems
Physical failure analysis of returned boards
Observational visits to customer sites
Field environmental measurements
Analysis of system data logs (Explorer runs)
Consultation with suppliers
Frequent reviews and update meetings of teams of engineers and management
Failure Mode: E-Cache Parity Errors

Months of work identified parity errors in e-cache (external, L2) SRAMS as the problem location but determining exact cause was elusive.
Data Collection Team

A team was formed to obtain field information on failures. Data from major customers’ datacenters were collected. The importance of acquiring time dependent field data was emphasized.
Field Data: Random Behavior?

Some customers experienced no failures on new servers. Other customers saw high levels of failures for the same systems.

Clues to Source of Problem?

One customer in a concrete vault well below ground level saw no failures.

Other customers in high altitude environments (e.g., observation stations) had more frequent failures.

Was altitude or barometric pressure a factor?
Variation of Field Failures Rates within a Datacenter

In the same datacenter, customers running different applications on identical systems experienced widely different failure (recurrence) rates.
Example of Application Dependence

Single Datacenter, 476 Identical Systems

Annualized Recurrence Rates Versus Application

Nearly 11x difference in ARRs between applications C and D.
Distribution of Failures Across Systems in a Datacenter

In the same datacenter, for identical systems running the same applications over the same time period, there could be systems with no failures, some with single failures, and some with multiple failures.
Application “C” Failure Distribution

Failure Distribution Over 101 Days
48 Identical Systems, Same Application

Number of Systems

Failures per System

Zero
One
Two
Three

0
5
10
15
20
25
30
Could statistical analysis and modeling of the field data provide any insights into the cause?

How could the application dependence be explained?

Could the model agree with the observed field behavior and allow prediction of future failures?

Could we model the distribution of failures across systems in a datacenter?
Reliability Considerations for Repairable Systems

Reliability is a function of many factors:

- Basic system design
- Operating conditions
- Environment
- Applications
- Software robustness
- Types of repairs
- Quality of repairs
- Materials used
- Suppliers
- Human behavior

Key measures

- Times between repairs (interarrival times)
- Number of repairs versus time, e.g., system age (running hours) or in a time interval
Interarrival Times: Key Property

Failures occur sequentially in time:

If the times between successive failures are getting longer, then the system reliability is improving.

Conversely, if the times between failures are becoming shorter, the reliability of the system is degrading.

Thus, analysis of the sequence of system failure times can be very revealing.

If the times show no trend (relatively stable), the system is neither improving or degrading, a characteristic of what is called a renewal process.
Do We Have a Renewal Process?

Critical question:
For a renewal process, the times between failures are independent and identically distributed (i.i.d.) observations from a single population. Does such an assumption hold for field data?

Consequences:
For a system, restoration to “like new,” such as replacement of a failed component with one from same population, implies a renewal process (i.i.d.). The possible assumption of a renewal process needs to be verified.
Analysis of a Renewal Process

Consider a single system for which the times to make repairs are ignored.

Ten failures are reported at the system ages (in hours):

The pattern of repairs is

```
0 100 200 300 400 500 600 700
* * * * * * * *
```

System Age (hours)
Analysis of a Renewal Process

A very revealing and useful graph is called the cumulative plot: the cumulative number of repairs, $N(t)$, is plotted against the system age, t, at repair.

For the renewal data, the cumulative plot is:
Analysis of a Renewal Process

Under a renewal process, since the times between failures come from a single population (i.i.d.), there is a constant average or mean time between repairs, called the **MTBF**.

Consequently, the cumulative plot should appear to follow a straight line.
Limitations of Field Data

Unfortunately, time dependent interarrival data is typically not available for systems.

Field reliability data is often collected in a form that allows determination of a \textit{mean time between failure}, \textit{MTBF}.

It is much easier to \textit{count the numbers} of failures in a given time period (e.g., one month) for a group of systems operating during that time period than it is to obtain the system installation dates to \textit{measure age} and the time dependent history of the failures.

Are there other ways to model the field behavior?
Renewal Process: Single System

For a renewal process, the **single distribution of failure times between repairs** defines the expected pattern of repairs.

Let X_i denote the **interarrival time** between the ith and the $(i-1)$ repair.

The **time to the kth repair** can be written as the sum of k interarrival times

$$ T(k) = \sum_{i=1}^{k} X_i $$

For example, if the first three interarrival times are 100, 150, and 75 hours, then $T(k) = 100+150+75 = 325$ hours.

Knowing the **probability distribution** (pdf) of X_i, we can theoretically find distributions for $N(t)$ and $T(k)$ along with the mean cumulative function (MCF), $M(t)$, and the renewal or recurrence rate ($ROCOF$) $m(t) = dM(t)/dt$.
Poisson Model for Renewal Process

Suppose the interarrival times X_i are i.i.d. with exponential probability density function (pdf) having constant failure rate intensity λ, that is,

$$f(x) = \lambda e^{-\lambda x}$$

Then, we can show that cumulative number of failures in time t, $N(t)$, has a Poisson distribution with constant renewal rate intensity λ. The expected number of repairs in time t is λt.

Note that λ is a rate (i.e., repairs/time) that is multiplied by time t to give the number of repairs by time t.
Homogeneous Poisson Process Model (HPP)

Consequently, the probability of observing exactly $N(t) = k$ failures in the interval $(0, t)$ is given by the Poisson distribution

$$P[N(t) = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

We call this renewal process for which the interarrival times are exponentially distributed a \textit{homogeneous Poisson process} (HPP).
MTBF for HPP

For a \(HPP \), the mean time between failures (\(MTBF \)) is constant and

\[
MTBF = \theta = 1 / \lambda
\]

The expected number of repairs in time \(t \) is

\[
M(t) = \lambda t = t / \theta.
\]

The mean time to the \(k \)th repair is

\[
k / \lambda = k \theta.
\]
HPP in Terms of MTBF

In terms of the **MTBF**, \(\theta \), the Poisson distribution for the HPP can be written as:

\[
P[N(t) = k] = \frac{(t/\theta)^k e^{-t/\theta}}{k!}
\]

Example: The **MTBF** is 10,000 hours. What’s the probability of one failure in 3 months?

The expected number \(\lambda t \) is

\[
t/\theta = (91 \text{ days} \times 24 \text{ hrs/day})/10,000 \text{ hrs} = 0.218
\]

The probability of exactly one failure is

\[
P[N(t) = 1] = \frac{(0.218)e^{-0.218}}{1!} = 0.0878
\]
HPP for Multiple Systems

By **multiplying** the calculated *HPP* Poisson distribution **probabilities** for a given failure rate or *MTBF* by the **number** of systems, we can estimate the expected **distribution of failures** across many similar *HPP* systems.
Case Study *HPP*

There were a total of 476 hosts in a large datacenter. *For confidentiality, the specific customer, type of system (large), and applications are not identified.*

By determining an overall failure rate or *MTBF* over the previous few months, we checked for the suitability of an *HPP* model that could predict over the next 101 days how many of the 476 systems would have no failures, one failure, two failures, and so on. This prediction was then compared against actual failure counts across all systems.

The model was in excellent agreement with observed results, confirming the *HPP*.
Model Confirmation

Comparison of Poisson Distribution Predictions Versus Actual Failures for a 101 Day Period

Poisson Modeling: Total 476 Hosts

![Graph showing comparison of actual versus predicted failures](image)
Modeling Applications to HPP

When each application was checked against an HPP model, the agreement was excellent.
Failure Rate Estimates for Poisson Processes

Over a period of 101 days, there were a total of 63 failures among the 476 systems in the datacenter. The overall annualized recurrence rate (ARR) is estimated as

$$\lambda = \frac{63}{476} \left(\frac{365}{101} \right) = 0.48 \text{ per system}$$

Similarly, we can estimate the ARR separately for each application.

<table>
<thead>
<tr>
<th>Application</th>
<th>#Hosts</th>
<th>Observation Days</th>
<th>Observation Hours</th>
<th>Total Fails</th>
<th>Device Hours</th>
<th>ARR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>45</td>
<td>101</td>
<td>2424</td>
<td>7</td>
<td>109080</td>
<td>0.56</td>
</tr>
<tr>
<td>B</td>
<td>33</td>
<td>101</td>
<td>2424</td>
<td>11</td>
<td>79992</td>
<td>1.20</td>
</tr>
<tr>
<td>C</td>
<td>48</td>
<td>101</td>
<td>2424</td>
<td>27</td>
<td>116352</td>
<td>2.03</td>
</tr>
<tr>
<td>D</td>
<td>350</td>
<td>101</td>
<td>2424</td>
<td>18</td>
<td>848400</td>
<td>0.19</td>
</tr>
<tr>
<td>Total</td>
<td>476</td>
<td>101</td>
<td>2424</td>
<td>63</td>
<td>1153824</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Superposition ARR Estimate

The overall datacenter ARR arises from a superposition of four application dependent Poisson processes with intensities λ_i, $i = 1,2,3,4$.

We can estimate the overall ARR by using a weighted formula (weights based on the number of systems – called hosts - running each application):

$$\lambda = \frac{\sum_i \lambda_i N_i}{\sum_i N_i} = \frac{0.56 \times 45 + 1.20 \times 33 + 2.03 \times 48 + 0.051 \times 350}{476} = 0.48$$

This result matches the previous estimate for the overall ARR for the 476 servers.
Consequences and Implications

Since the results were consistent with a HPP, the implication was that the failure behavior for any system in the datacenter derived from a renewal process with a constant, application dependent failure rate.

Constant failure rates result from a constant source.

There was no physical damage to the SRAM by the cause. The “good as new” assumption for a renewal process seemed valid.

Failure rates were also determined to vary with altitude.

These observations supported the view that only plausible source was radiation from cosmic rays causing single bit parity errors in the e-cache memory. Without error detection and correction, failures could occur and panic the systems.
Physical Mechanisms for Soft Errors

The radiation environment

Alpha particles

High energy cosmic rays

Low energy cosmic rays and \(^{10}\)B fission in boron-doped phosphosilicate glass (BPSG) dielectric layers of ICs

Factors impacting SER: complexity, density, lower voltage, higher speeds, lower cell capacitance

The susceptibility to soft error rates for DRAM and SRAM has increased with **reduced dimensions** (higher densities) and **lowered operating voltages** of advancing technology.
Read-Write Activity

The CPU writes to e-cache memory. Memory in e-cache can be saved to permanent memory. If a cosmic ray causes a parity error to occur in e-cache and an attempt is made to read data in e-cache or to write it to main memory, the parity error will be detected and the system will panic to prevent data corruption.

Scrubbing the e-cache to correct single bit errors in e-cache before the errors are written to memory was a band-aid approach. A much more effective solution was to incorporate mirroring, where every byte is duplicated and stored in two locations in SRAM along with a parity checker built into the SRAM.

(Note: The equally effective alternative of replacing parity protection with single-error correction, double-error detection error correction code, “SECDED ECC”, was rejected as it would have required a change to the processor’s pipeline.)
Explaining Application Dependence

If an application *writes often* to memory but *reads infrequently*, an e-cache error can be overwritten before a read cycle sees the error. Imagine an application updating minutes used by a cell phone user. Consequently, the failure rates will be low.

If an application *reads frequently*, then e-cached errors will be detected quickly and cause failures. The failure rates will be high.
Best Practices

Instead of removing a failed board, the simplest action was simply to **reboot the system**. No physical **damage** had occurred and the probability of a hit by a cosmic ray was **purely random**.

In addition, the costs of replacing boards and subsequent damage to the boards or systems (e.g., bent pins) could be avoided.

Spreadsheets were sent to the field for the service engineers to do the model fitting for any customer and illustrate the model consistency.
Best Practices: Spreadsheet to Field

Distribution of Number of Failures Per Machine for Poisson Process for Specified Time Period (Repairable Systems)

<table>
<thead>
<tr>
<th>Entry Description</th>
<th>Enter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF (hrs)</td>
<td>10,000</td>
</tr>
<tr>
<td>Time in Days</td>
<td>30</td>
</tr>
<tr>
<td>Number of Machines</td>
<td>1,000</td>
</tr>
<tr>
<td>Time (hrs)</td>
<td>720</td>
</tr>
<tr>
<td>Time/MTBF</td>
<td>0.072</td>
</tr>
</tbody>
</table>

Poisson Distribution Calculations

<table>
<thead>
<tr>
<th>X fails per machine</th>
<th>Probability of X</th>
<th>No. Machines with X Fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>93.1%</td>
<td>931</td>
</tr>
<tr>
<td>1</td>
<td>6.7%</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>0.2%</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>
Confirmation

Introducing mirrored SRAMs into systems stopped the failures.
Summary

Field failures represent significant inconvenience to customers.

Field reliability remediation efforts are costly to system manufacturers.

Complex systems make identification of causes difficult and challenging.

Statistical analysis and modeling can provide valuable insights into causes.

Undetected and uncorrected soft errors are a significant factor in system reliability, but there are approaches to alleviate the problem.
Where to Get More Information

Google “soft error reliability” for a wealth of information on the topic.

Search Wikipedia under “soft error”, “CPU cache”, “cosmic rays”.

Additional references on modeling and data analysis at www.trindade.com/publications.html
David C. Trindade, Ph.D.

Author’s Information:
Distinguished Principal Engineer
Sun Microsystems, Inc.
Email: david.trindade@sun.com

For biography, see www.trindade.com