Phase I Monitoring of Nonlinear Profiles

James D. Williams

William H. Woodall

Jeffrey B. Birch

May 22, 2003
Profile Monitoring

Scenario

- Monitor a process or product whose quality cannot be assessed by a single quality characteristic
- Measure across some continuum (a sequence of time, space, etc.) producing a “profile”
- Various profile shapes:
 - Linear Profiles: (Kang and Albin (2000), Kim, Mahmoud, and Woodall (2003), Mahmoud and Woodall (2003))
 - Nonlinear Profiles: (Brill (2001))
- Very little work has been done to address monitoring nonlinear profiles (Woodall, et. al. (2003))
Profile Monitoring

Path forward

- Brill’s (2001) method
- Suggest two more methods
- Illustrate methods with nonlinear profile data
- Recommendations
Example 1: Vertical Density Profile (VDP)

Board A1 from Walker and Wright (2002, *JQT*)
Example 2: Dose-Response Profile of a Drug
Phase I Analysis: Historical Data

Response

Nonlinear Profile

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y_{1,1}$</td>
<td>$y_{1,2}$</td>
<td>...</td>
<td>$y_{1,n}$</td>
</tr>
<tr>
<td>2</td>
<td>$y_{2,1}$</td>
<td>$y_{2,2}$</td>
<td>...</td>
<td>$y_{2,n}$</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>m</td>
<td>$y_{m,1}$</td>
<td>$y_{m,2}$</td>
<td>...</td>
<td>$y_{m,n}$</td>
</tr>
</tbody>
</table>
Brief Intro to Nonlinear Regression Models

Simple Case: One Y and one X

\[y_i = f(x_i, \beta) + \varepsilon_i \quad i = 1, \ldots, n \]

where

- \(y_i \) is the \(i^{th} \) response
- \(f(x_i, \beta) \) is an appropriate nonlinear function
- \(x_i \) is the \(i^{th} \) regressor variable value
- \(\beta \) is the \(p \times 1 \) vector of parameters to estimate
- \(\varepsilon_i \) is the \(i^{th} \) residual error
Brief Intro to Nonlinear Regression Models

\[\hat{\beta}_i \quad \text{obtained iteratively for each sample} \]

\[Var(\hat{\beta}_i) = \hat{\sigma}^2 \left(\hat{D}_i' \hat{D}_i \right)^{-1} = C_i \]

where \(\hat{D}_i \) is the estimated derivative matrix used in the estimation of the nonlinear regression parameters
Parameter Estimates from Historical Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Parameter</th>
<th>(\hat{\beta}_{1,1})</th>
<th>(\hat{\beta}_{1,2})</th>
<th>(\cdots)</th>
<th>(\hat{\beta}_{1,p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\hat{\beta}_{2,1})</td>
<td>(\hat{\beta}_{2,2})</td>
<td>(\cdots)</td>
<td>(\hat{\beta}_{2,p})</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>(\hat{\beta}_{m,1})</td>
<td>(\hat{\beta}_{m,2})</td>
<td>(\cdots)</td>
<td>(\hat{\beta}_{m,p})</td>
<td></td>
</tr>
</tbody>
</table>
How to Monitor Nonlinear Profiles

- Ideally, monitor each parameter independently
- **Problem**: parameter estimates are correlated in nonlinear regression
- Cannot monitor each parameter separately, so use a multivariate T^2 control chart to monitor the parameters simultaneously
Multivariate T^2 Control Chart Statistic

General form of the T^2 statistic:

$$T_i^2 = \left(\hat{\beta}_i - \bar{\beta} \right) S^{-1} \left(\hat{\beta}_i - \bar{\beta} \right)$$

$i = 1, \ldots, m$

S is the covariance matrix of parameter estimates

$$\hat{\beta}_i = \begin{pmatrix} \hat{\beta}_{i,1} \\ \hat{\beta}_{i,2} \\ \vdots \\ \hat{\beta}_{i,p} \end{pmatrix}$$

$$\bar{\beta} = \begin{pmatrix} \frac{1}{m} \sum_{i=1}^{m} \hat{\beta}_{i,1} \\ \frac{1}{m} \sum_{i=1}^{m} \hat{\beta}_{i,2} \\ \vdots \\ \frac{1}{m} \sum_{i=1}^{m} \hat{\beta}_{i,p} \end{pmatrix}$$
Three Choices for S

Method 1: Sample Covariance Matrix (Brill, 2001)

$$S_1 = \frac{1}{m-1} \sum_{i=1}^{m} \left(\hat{\beta}_i - \bar{\beta} \right) \times \left(\hat{\beta}_i - \bar{\beta} \right)'$$

Pros:
- Easy to calculate
- Widely used and easily understood

Cons:
- Greatly affected by shifts in mean vector
- Results in low power for the T^2 control chart
Three Choices for S

Method 2: Successive Differences (Holmes and Mergen, 1993)

Let \(\mathbf{v}_i = \hat{\beta}_{i+1} - \hat{\beta}_i \quad i = 1, \ldots, m - 1 \)

\[
\mathbf{v} = \begin{bmatrix}
\mathbf{v}_1' \\
\mathbf{v}_2' \\
\vdots \\
\mathbf{v}_{m-1}'
\end{bmatrix}
\]

Then \(S_2 = \frac{\mathbf{V}'\mathbf{V}}{2(m-1)} \)

Pros:
- Like moving range with individual observations
- Not effected by shifts in the mean vector
- High power

Cons:
- Less statistical theory developed to date
Three Choices for S

Method 3: Intra-Profile Pooling

For each of the m samples: \[
\text{Var}(\hat{\beta}_i) = \hat{\sigma}^2 \left(\hat{D}_i' \hat{D}_i \right)^{-1} = C_i
\]

Then \[
S_3 = \frac{1}{m} \sum_{i=1}^{m} C_i
\]

Pros: • Uses information from nonlinear regression estimation

Cons: • Does not account for profile-to-profile common cause variability
Three Choices for T_i^2

Three formulations of the T^2 statistic:

Method 1: Sample Covariance Matrix

$$T_{1,i}^2 = \left(\hat{\beta}_i - \bar{\beta} \right)' S_1^{-1} \left(\hat{\beta}_i - \bar{\beta} \right)$$

Method 2: Successive Differences

$$T_{2,i}^2 = \left(\hat{\beta}_i - \bar{\beta} \right)' S_2^{-1} \left(\hat{\beta}_i - \bar{\beta} \right)$$

Method 3: Intra-Profile Pooling

$$T_{3,i}^2 = \left(\hat{\beta}_i - \bar{\beta} \right)' S_3^{-1} \left(\hat{\beta}_i - \bar{\beta} \right)$$
Upper Control Limits

Method 1: Sample Covariance Matrix

\[T_1^2 \frac{m}{(m-1)^2} \sim \text{Beta} \left(\frac{p}{2}, \frac{m-p-1}{2} \right) \]

As discussed by Sullivan and Woodall (1996)

\[UCL_1 = \frac{(m-1)^2}{m} B_{1-\alpha, p/2, (m-p-1)/2} \]
Upper Control Limits

Method 2: Successive Differences

Approximately

\[T_2^2 \frac{m}{(m-1)^2} \sim \text{Beta} \left(\frac{p}{2}, \frac{f-p-1}{2} \right) \]

where

\[f = \frac{2(m-1)^2}{3m - 4} \]

For more information, see Scholz and Tosch (1994)

\[UCL_2 = \frac{(m-1)^2}{m} B_{1-\alpha, p/2, (f-p-1)/2} \]
Upper Control Limits

Method 3: Intra-Profile Pooling

We think that approximately

\[T_3^2 \frac{m(m - p)}{p(m - 1)(m + 1)} \sim F(p, m - p) \]

\[UCL_3 = \frac{m(m - p)}{p(m - 1)(m + 1)} F_{1-\alpha, p, m-p} \]

Control limits are best approximations so far
Illustration: VDP Data

VDP of 24 Particle Boards
Nonlinear Function to Model VDP Data

Use a “bathtub” function to model each board from the VDP data

\[
f(x_i, \beta) = \begin{cases}
 a_1(x_i - d)^{b_1} + c & x_i > d \\
 a_2(-x_i + d)^{b_2} + c & x_i \leq d
\end{cases}
\]

where \(x_i \) is the \(i \)th regressor variable value

\[
\beta = \begin{pmatrix}
 a_1 \\
 a_2 \\
 b_1 \\
 b_2 \\
 c \\
 d
\end{pmatrix}
\]

determine the width of the “bathtub”

determine the “flatness” of the “bathtub”

\(c \rightarrow \) is the bottom of the “bathtub”

\(d \rightarrow \) is the center of the “bathtub”
Nonlinear Function to Model VDP Data

Board #1 from Walker and Wright (2002, JQT)
Nonlinear Function to Model VDP Data

Estimated nonlinear profile of Board #1

\[
f(x_i, \hat{\beta}) = \begin{cases}
5708(x_i - 0.313)^{5.14} + 46.0 & x_i > 0.313 \\
3921(-x_i + 0.313)^{4.87} + 46.0 & x_i \leq 0.313
\end{cases}
\]

- Estimate profile for each board
- Calculate \(S_1 \), \(S_2 \), and \(S_3 \).
- Calculate \(T_1^2 \), \(T_2^2 \), and \(T_3^2 \).
T_1^2 Control Chart

T_1^2 UCL = 9.6
T^2_2 Control Chart

T^2_2 UCL = 14.1

Board #15

Board #18
T^2_1 and T^2_2 Control Charts

T^2_2 UCL = 14.1

T^2_1 UCL = 9.6
According to our UCL, all of the boards are out-of-control.
Conclusions

- Method 1 (sample covariance matrix) does not take into account the sequential sampling structure of the data:
 - The overall probability of detecting a shift in the mean vector will decrease (See Sullivan and Woodall, 1996)
 - Should not be used

- Method 2 (successive differences) accounts for the sequential sampling scheme, and gives a more robust estimate of the covariance matrix

- In the VDP example, both Methods 1 and 2 gave same result because
 - No apparent shift in the mean vector
 - There were only about two outliers
Conclusions

- Method 3 (intra-profile pooling) should be used when there is no profile-to-profile common cause variability.

- Comparison of the three methods:
 - Method 1 assumes all variability is due to common cause.
 - Method 3 assumes that no variability is due to common cause.
 - Method 2 is somewhere in the middle.

Issue: Monitoring parameters versus monitoring the fitted curves.
References

