On the Correctness of Transactional Memory

Rachid Guerraoui Michał Kapałka

EPFL, Switzerland

PPoPP 2008
What is a TM precisely?
Fundamental Question

What is a TM precisely?
When is a TM correct?

Serializability, linearizability, ... do not answer those!
Important Consequences

- Hard to compare TMs
- Hard to prove a TM correct
- Hard to show inherent limitations of TMs
Our Take

Opacity – a correctness condition for TMs (ensured by many TMs)

≈

ACID / serializability for DBs
Opacity

- Compare TMs
 opacity is implementation-agnostic

- Prove a TM correct
 graph interpretation of opacity

- Show inherent limitations of TMs
 time complexity lower bound
Outline

1. TM semantics: intuition
2. Existing correctness criteria: examples
1-lock semantics

atomic {
 a = x
 c . add(5)
 s . push(a)
}
atomic {
 a = x
 c . add(5)
 s . push(a)
}
atomic {
 a = x
 c . \texttt{add}(5)
 s . \texttt{push}(a)
}

1-lock semantics

transaction

opacity
TM Semantics

- Committed: instantaneous
- Aborted: never visible
- All: observe consistent state
Model of Interaction

![Diagram of interaction between App and TM]

- **App**:
 - \(x . \text{add}(5) \)
 - \(\text{try-commit} \)
 - \(\text{ok/aborted} \)

- **TM**:
 - \(\text{ok} \)

Michał Kapalęka (EPFL)

Opacity

PPoPP 2008
Outline

1. TM semantics: intuition
2. Existing correctness criteria: examples
Serializability: [Papadimitriou ’79]

- Committed: instantaneous

Recoverability: [Hadzilacos ‘88]

- If T updates x, no tx accesses x until T commits/aborts.
Ser. / Recov. Too Weak

\[x \rightarrow 0 \]

\[T_1 \]

read

\[\begin{array}{cc}
0 & 0 \\
x & y
\end{array} \]
Ser. / Recov. Too Weak

\[x \rightarrow 0 \]

\[T_1 \]

\[x = 1 \]

\[T_2 \]

write

\[\begin{array}{c}
1 \\
x
\end{array} \quad \begin{array}{c}
0 \\
y
\end{array} \]
Ser. / Recov. Too Weak

\[x \rightarrow 0 \]

\[T_1 \]

\[x = 1 \quad y = 1 \]

\[T_2 \]

commit

write

\[1 \quad 1 \]

\[x \quad y \]
Ser. / Recov. Too Weak

\[x \rightarrow 0 \]

\[T_1 \]

\[y \rightarrow 1 \]

\[T_2 \]

\[x = 1 \quad y = 1 \]

commit

read

\[\begin{array}{c}
\quad 1 \\
\quad y \\
\end{array} \]

\[\begin{array}{c}
\quad 1 \\
\quad x \\
\end{array} \]
Ser. / Recov. Too Weak

\[x \rightarrow 0 \quad y \rightarrow 1 \]

\[T_1 \]

\[T_2 \]

\[x = 1 \quad y = 1 \]

\[\text{abort} \]

\[\text{commit} \]

\[1 \quad 1 \]

\[x \quad y \]
$T_1 \xrightarrow{\text{write}} 0$

$x = 1$
Ser. / Recov. Too Strict

\[x = 1 \]

\[T_1 \]

\[x = 2 \]

\[T_2 \]

write

\[X \]

\[1 \]

\[X \]
Other Desirable Properties

- Arbitrary objects
- Multiple versions of each object
- Updates at any time
- Real-time order
- User’s perspective
Outline

1. TM semantics: intuition
2. Existing correctness criteria: examples
Given:

- transactional execution
 (sequence of invocations & responses)

Answer:

- is the execution correct?
Opacity: Step by Step

Sequential operations

Sequential transactions

Completed transactions

All transactions
Sequential Operations

\[s \cdot \text{push}(3) \quad x = 5 \quad s \cdot \text{pop} \rightarrow 3 \quad x \rightarrow 5 \]

Sequential specification of \(s \) and \(x \)
Sequential Transactions

$s \cdot \text{push}(3) \; x = 5$

commit

$s \cdot \text{pop} \rightarrow 3 \; x \rightarrow 5$

commit (abort)

Every transaction is legal
Concurrent, Complete Transactions

\[s \cdot \text{push}(3) \ x = 5 \]

\[s \cdot \text{pop} \rightarrow 3 \]

\[s \cdot \text{pop} \rightarrow 3 \]

\[x \rightarrow 5 \]

\[\text{abort} \]
Concurrent, Complete Transactions

\[s \cdot \text{push}(3) \ x = 5 \]

\[s \cdot \text{pop} \rightarrow 3 \]

\[\text{com.} \]

\[\text{com.} \]

\[s \cdot \text{pop} \rightarrow 3 \]

\[x \rightarrow 5 \]

\[\text{abort} \]
Concurrent, Complete Transactions

\[s \cdot \text{push}(3) \ x = 5 \quad \text{com.} \quad s \cdot \text{pop} \rightarrow 3 \quad \text{com.} \]

\[s \cdot \text{pop} \rightarrow 3 \quad x \rightarrow 5 \quad \text{abort} \]
Concurrent, Complete Transactions

$\text{s. push(3)} \ x = 5$

com.

$\text{s. pop} \rightarrow 3$

com.

$\text{s. pop} \rightarrow 3$

$x \rightarrow 5$

abort
Concurrent, Complete Transactions

\[s \cdot \text{push}(3) \ x = 5 \]

\[s \cdot \text{pop} \rightarrow 3 \]

\[s \cdot \text{pop} \rightarrow 3 \]

\[x \rightarrow 5 \]

abort
Concurrent, Complete Transactions

\[s \cdot \text{push}(3) \ x = 5 \]
\[\text{com.} \]
\[s \cdot \text{pop} \rightarrow 3 \]
\[\text{com.} \]

\[s \cdot \text{pop} \rightarrow 3 \]
\[x \rightarrow 5 \]
\[\text{abort} \]
Concurrent, Complete Transactions

\[s \cdot \text{push}(3) \ x = 5 \]
\[s \cdot \text{pop} \rightarrow 3 \]
\[x \rightarrow 5 \]
\[\text{abort} \]
Live Transactions

\[s . pop \rightarrow 3 \]
Live Transactions

\[s \cdot \text{pop} \rightarrow 3 \]

\[\text{aborted} \]

\[s \cdot \text{pop} \rightarrow 3 \]
Live Transactions

\[
s \cdot \text{pop} \rightarrow 3
\]

\[
\text{try-commit}
\]

committed or aborted
The Definition

A history H ensures opacity if there exists a sequential history S equivalent to some history in set $\text{Complete}(H)$, such that:

1. S preserves the real-time order of H,
2. every transaction $T_i \in S$ is legal in S.

Michał Kapalka (EPFL)
Opacity: Captures TM Semantics

- Committed: instantaneous
- Aborted: never visible
- All: observe consistent state
Opacity: Benefits

- Compare TMs
 - opacity is implementation-agnostic

- Prove a TM correct
 - graph interpretation of opacity

- Show inherent limitations of TMs
 - time complexity lower bound