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A naive approach to causal reasoning

Y

P(Y|X=0)

P(Y|X=1)

Given the following distribution for real-valued Y

P(Y) 

and a binary variable X such that

Y

Y
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Strong evidence for a certain causal direction…

X Y Plausible: 
1) explains bimodality of P(Y)
2) X shifts distribution of Y : linear effect

Y X Implausible:
1) bimodality of P(Y) remains unexplained 
2) unlikely that conditioning on effect strictly

seperates modes

Try to formalize why                   is more plausibleX Y
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Markov kernels of a causal hypothesis

Given n random variables X1,...,Xn with joint measure P

causal hypothesis:
DAG G such that P is Markovian relative to G

P(x1,...,xn)= j=1...n  P(xj|paj)

P(xj|paj) :  Markov kernels of P w.r.t. G

⇒

causal parents of X j
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Principle of “most plausible” Markov kernels

Prefer causal hypotheses which lead to 
“smooth” and “simple” Markov kernels

Intuition:

P(effect,cause)=P(effect|cause) P(cause)

leads typically to smoother terms than factorization

P(effect,cause)=P(cause|effect) P(effect) only an abstract
mathematical
expression 

describes the
“physics” of the
causal mechanism
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How to get well-defined inference rules 
from these vague ideas...

1) Shimizu, Hyärinen, Kano & Hoyer 2005: 
Prefer linear effects with additive noise
(ICA for identifying most plausible causal order)

2) Sun, Janzing & Schölkopf 2006: Prefer Markov
kernels that maximize conditional entropy of effects, 
given their causes s.t. the observed first and 
second moments

3) Sun, Janzing & Schölkopf 2006: Evaluate complexity
of Markov kernels using a Hilbert space norm
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Defining complexity of conditional 
probabilities by semi-norms

1) Write P(y|x) = exp( f(y,x) – ln z(x) ) with appropriate f

2) Define complexity of PY|X by C(PY|X ):=|| f ||2 ,
where ||.|| is some seminorm on a Hilbert space HYX

Idea: small seminorm for smooth f

(PY|X is simple if it maximizes conditional entropy 
s.t. smooth constraints)

Note: log PY|X need not to be smooth,
partition function z(x) may be arbitrarily complex
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Properties of C

If semi-norm satisfies ||a    1||=||a|| =||1    a|| we have:

1)  Additivity: C(P     Q)=C(P)+C(Q)

2)  Consistency: If X,Y independent then C(PY|X)=C(PY)

3) Asymmetry: C(PXY)     C(PY|X)+C(PX) C(PX |Y)+C(PY)

Consider C(PY|X)+C(PX) as complexity of the causal model

Prefer causal direction with smaller complexity

⊗

≠≠

⇒

⊗

X Y

⊗
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Split H =H1 H2  , f = f1 f2 , define seminorm || f || :=||f2 ||

Idea: Let H1 contain extremely simple functions 

(e.g. polynomials of degree 2 since they
generate gaussians with linear interaction terms:
P(y|x) = exp(– ay2 – bxy –ln z(x))  )

⊕ ⊕

Construct semi-norms by penalized subspaces
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Kernelizing the norms (RKHS)

Our (preliminary) choice:

k2((x,y),(x´,y´)):= exp (-||(x,y)-(x´,y´)||2 / 2) 
k1((x,y),(x´,y´)):=  (a  x,x´ +b ) (c  y,y´ + d)2

Gaussian term k2 provides flexibility,
polynomial term k1 allows for decay of probabilities at infinity 
and supports linear interactions and Gauss distributions

Mercer kernels k1 k2 have nothing to do with Markov kernels !

H1 := span of functions  k1((x,y) , (.,.))  with pos. semidef. k1

H2 :=  span of functions k2((x,y) , (.,.))
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Model fit for finite dataset (regularized ML)

maxg { i (g(xi,yi) – x exp(g(xi,y)) - ||g|| }

Bayesian interpretation: 
prior proportional to exp(- ||g|| ) 

P(y|x) ~ exp(f(x,y))with f solution of
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Experiments with random data

Mixtures of 1 - 5 Gauss
or Gamma distributions:

Larger complexity values
than pure ensembles

(even when mixture was
not obvious!)
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Example with real-world data:
Income of 112 000 persons (USA, Pacific Division)

Distribution of
Incomeover
total population

Incomeof 
men / women
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Evaluation of Complexities:

C(PIncome) =27.57                               C(PIncome|Sex)=20.29

C(PSex|Income)=0.0255 C(PSex)=0  

C(PIncome)+C(PSex|Income) >     C(PSex)+C(PIncome|Sex)

Sex IncomePrefer causal hypothesis⇒
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Example with real-world data:
Age and marital status

Variables:  Age: natural number  
Marital Status: binary: never married (yes/no)

C(PAge) =0.0164                           C(PAge | married)=0.1145

C(Pmarried | Age)=0.0082                                 C(Pmarried)=0 

⇒ Prefer causal hypothesis

C(Page ) + C(Pmarried | Age)          < C(Pmarried )  +C(PAge | married)

Age married
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Partially negative results:

Handwritten numerals (0,1) as cause
and some Karhunen-Loeve coefficients as effects

- Correct results when coefficient was strongly 
correlated to the class label

- Balanced results in case of weak correlations
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How we would like to use our approach…

…in constraint-based approaches:
use plausibility of Markov kernels to select among 
Markov-equivalent graphs
(our optimization is not feasible without pre-selection!)

…in Bayesian approaches:
complexity measure provides priors for Markov kernels
(our priors take into account the structure of the value set!)
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Conclusions

1) Every causal inference method could benefit from a 
good complexity / plausibility measure for Markov 
kernels (providing additional information)

2) We don´t claim to have the right one…

…however: 

RKHS-norms are a flexible way of constructing
complexity measures having nice properties
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Thanks for your attention !


