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Given the following distribution for real-valued Y

A

P(Y)

N\

and a binary variable X such that
A

P(Y|X=0) kY

A

P(Y|X=1) N




®—’® Plausible:

1) explains bimodality of P(Y)
2) X shifts distribution of Y : linear effect

®—’® Implausible:

1) bimodality of P(Y) remains unexplained
2) unlikely that conditioning on effect strictly
seperates modes

Try to formalize why X&) is more plausible .



Given nrandom variables X,,...,X with joint measure P

causal hypothesis:
DAG G such that P is Markovian relative to G

= P4 %)=TI_; , P(x|pa) Q

causal parents of X; Q%b

P(x|pg) : Markov kernels of Pw.r.t. G



Prefer causal hypotheses which lead to
“smooth” and “simple” Markov kernels

describes the

Intuition: / “physics” of the

causal mechanism

P(effect,cause)=P(effect|cause) P(cause)
leads typically to smoother terms than factorization

P(effect,cause)=P(cause|effect) P(effect) only anabstract

mathematical
\/ expression s



1)

2)

3)

Shimizu, Hyarinen, Kano & Hoyer 2005:
Prefer linear effects with additive noise
(ICA for identifying most plausible causal order)

Sun, Janzing & Scholkopf 2006: Prefer Markov
kernels that maximize conditional entropy of effects,
given their causes s.t. the observed first and
second moments

Sun, Janzing & Scholkopf 2006: Evaluate complexity
of Markov kernels using a Hilbert space norm



1) Write P(y|x) = exp( f(y,x) — In z(x) ) with appropriate f

2) Define complexity of Py by C(Px ):=I f If,
where [|.||is some seminorm on a Hilbert space H.
ldea: small seminorm for smooth f

(Pyx Is simple if it maximizes conditional entropy
s.t. smooth constraints)

Note: log P,\x need not to be smooth,
partition function z(x) may be arbitrarily complex



If semi-norm satisfies ||a0 1||=||a|| =1 &l have:

1) Additivity: C(PO Q)=C(P)+C(Q)

2) Consistency: If X,Y independent then C(R,x)=C(R,)

3) Asymmetry: C(Pyy) # C(Rx)*C(F) # C(P y)+C(R))
Consider C(R,x)+C(Py) as complexity of the causal model

)

= Prefer causal direction with smaller complexity



)

SplitH=H,0 H,, f=f,0f,, define seminorm || f || :=|[f ||
ldea: Let H, contain extremely simple functions

(e.g. polynomials of degree 2 since they

generate gaussians with linear interaction terms:
P(y[x) = exp(- a§y— bxy —In z(x)) )



H, := span of functions k,((x,y), (.,.)) with pos. semidef,k
H, := span of functions Kk,((x,y) , (.,.))

Our (preliminary) choice:

Ko((%,¥),(X",y")):= exp (-]|(x,y)-(x",y }ilo?)
kl((X,y),(X,,y,)):: (d X,X>, +b ) (‘C y’y, t d)

Gaussian term k, provides flexibility,
polynomial term k, allows for decay of probabilities at infinity
and supports linear interactions and Gauss distributions

Mercer kernels k; k, have nothing to do with Markov kernels ! 10



P(y|x) ~ exp(f(x,y)with f solution of

max, { = (9(x.y) — = exp(aGs.y) - €llall}

Bayesian interpretation:
prior proportional to exp(-€ ||g]| )
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Mixtures of 1 - 5 Gauss
or Gamma distributions:

Larger complexity values
than pure ensembles

(even when mixture was
not obvious!)
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C(F)Income) =27.57 %me|8e)<:20'29

+ C(F)Sexllncomk)ezo'0255 C(FS)eQ:O

—

C(I:)Income)+C(PSex|lncom)3 > C(F%e>9+C(PIncome|Se)<

— Prefer causal hypothesis
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Variables: Age: natural number
Marital Statusbinary: never married (yes/no)

C(Pygeo =0.0164 G(R | married=0.1145
—l—' C(PmarriedlAgg:O'OO82 %ie&zo
C(Page) + C(Pmarried |Aga < C(Enarried) +C(PAge | marriea

— Prefer causal hypothesi
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Handwritten numerals (0,1) as cause
and some Karhunen-Loeve coefficients as effects

- Correct results when coefficient was strongly
correlated to the class label

- Balanced results in case of weak correlations
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...In constraint-based approaches:

use plausibility of Markov kernels to select among
Markov-equivalent graphs

(our optimization is not feasible without pre-selection!)

...In Bayesian approaches:
complexity measure provides priors for Markov kernels
(our priors take into account the structure of the value set!)
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1) Every causal inference method could benefit from a
good complexity / plausibility measure for Markov
kernels (providing additional information)

2) We don’t claim to have the right one...

...however:

RKHS-norms are a flexible way of constructing
complexity measures having nice properties

18



19



