Inferring causal directions by evaluating the complexity of conditional distributions

Xiaohai Sun¹, Dominik Janzing^{1,2}, and Bernhard Schölkopf¹

MPI for Biological Cybernetics, Tübingen, Germany
 Universität Karlsruhe (TH), Germany

1

A naive approach to causal reasoning

Given the following distribution for real-valued Y

Strong evidence for a certain causal direction...

Plausible:
1) explains bimodality of P(Y)
2) X shifts distribution of Y : linear effect

Implausible:

- 1) bimodality of P(Y) remains unexplained
- 2) unlikely that conditioning on effect strictly separates modes

Markov kernels of a causal hypothesis

Given n random variables $X_1, ..., X_n$ with joint measure P

causal hypothesis: DAG G such that P is Markovian relative to G

 $P(x_i|pa_i)$: Markov kernels of P w.r.t. G

Prefer causal hypotheses which lead to "smooth" and "simple" Markov kernels

How to get well-defined inference rules from these vague ideas...

- Shimizu, Hyärinen, Kano & Hoyer 2005: Prefer linear effects with additive noise (ICA for identifying most plausible causal order)
- Sun, Janzing & Schölkopf 2006: Prefer Markov kernels that maximize conditional entropy of effects, given their causes s.t. the observed first and second moments
- 3) Sun, Janzing & Schölkopf 2006: Evaluate complexity of Markov kernels using a Hilbert space norm

Defining complexity of conditional probabilities by semi-norms

1) Write $P(y|x) = \exp(f(y,x) - \ln z(x))$ with appropriate f

2) Define complexity of $P_{Y|X}$ by $C(P_{Y|X}):=||f||^2$, where ||.|| is some seminorm on a Hilbert space H_{YX} Idea: small seminorm for smooth f

 $(P_{Y|X} \text{ is simple if it maximizes conditional entropy s.t. smooth constraints})$

Note: $\log P_{Y|X}$ need not to be smooth, partition function z(x) may be arbitrarily complex

Properties of C

If semi-norm satisfies $||a \otimes 1|| = ||a|| = ||1 \otimes a||$ we have:

- 1) Additivity: $C(P \otimes Q) = C(P) + C(Q)$
- 2) Consistency: If X,Y independent then $C(P_{Y|X})=C(P_Y)$
- 3) Asymmetry: $C(P_{XY}) \neq C(P_{Y|X}) + C(P_X) \neq C(P_{X|Y}) + C(P_Y)$
- Consider $C(P_{Y|X})+C(P_X)$ as complexity of the causal model

 \Rightarrow Prefer causal direction with smaller complexity

Construct semi-norms by penalized subspaces

Split $H = H_1 \oplus H_2$, $f = f_1 \oplus f_2$, define seminorm $|| f || := || f_2 ||$

Idea: Let H₁ contain extremely simple functions

(e.g. polynomials of degree 2 since they generate gaussians with linear interaction terms: $P(y|x) = exp(-ay^2 - bxy - ln z(x))$)

Kernelizing the norms (RKHS)

 $\begin{array}{ll} H_1 := \text{ span of functions } k_1((x,y) \ , (.,.)) \ \text{ with pos. semidef. } k_1 \\ H_2 := \text{ span of functions } k_2((x,y) \ , (.,.)) \end{array}$

Our (preliminary) choice:

 $\begin{aligned} k_2((x,y),(x',y')) &:= \exp(-||(x,y)-(x',y')||^2/\sigma^2) \\ k_1((x,y),(x',y')) &:= (a\langle x,x'\rangle + b) (c\langle y,y'\rangle + d)^2 \end{aligned}$

Gaussian term k_2 provides flexibility,

polynomial term \mathbf{k}_1 allows for decay of probabilities at infinity and supports linear interactions and Gauss distributions

Mercer kernels $k_1 k_2$ have nothing to do with Markov kernels ! 10

Model fit for finite dataset (regularized ML)

 $P(y|x) \sim exp(f(x,y))$ with f solution of

$$\max_{g} \left\{ \Sigma_{i} \left(g(x_{i}, y_{i}) - \Sigma_{x} \exp(g(x_{i}, y)) - \varepsilon \|g\| \right) \right\}$$

Bayesian interpretation: prior proportional to $exp(-\epsilon ||g||)$

Experiments with random data

Mixtures of 1 - 5 Gauss or Gamma distributions:

Larger complexity values than pure ensembles

(even when mixture was not obvious!)

Example with real-world data: Income of 112 000 persons (USA, Pacific Division)

Evaluation of Complexities:

$$C(P_{Income}) = 27.57$$

$$C(P_{Income|Sex}) = 20.29$$

$$C(P_{Sex|Income}) = 0.0255$$

$$C(P_{Sex}) = 0$$

$$C(P_{Income}) + C(P_{Sex|Income}) > C(P_{Sex}) + C(P_{Income|Sex})$$

$$\Rightarrow Prefer causal hypothesis$$

$$Sex$$

$$Income$$

Example with real-world data: Age and marital status

Variables: Age: natural number Marital Status: binary: never married (yes/no)

 $C(P_{Age}) = 0.0164$ $C(P_{Age | married}) = 0.1145$

 $- C(P_{\text{married} | Age}) = 0.0082$

 $C(P_{married})=0$

 $C(P_{age}) + C(P_{married | Age}) < C(P_{married}) + C(P_{Age | married})$

 \Rightarrow Prefer causal hypothesis (Age)

Partially negative results:

Handwritten numerals (0,1) as cause and some Karhunen-Loeve coefficients as effects

- Correct results when coefficient was strongly correlated to the class label
- Balanced results in case of weak correlations

How we would like to use our approach...

... in constraint-based approaches:

use plausibility of Markov kernels to select among Markov-equivalent graphs (our optimization is not feasible without pre-selection!)

...in Bayesian approaches:

complexity measure provides priors for Markov kernels (our priors take into account the structure of the value set!)

Conclusions

- 1) Every causal inference method could benefit from a good complexity / plausibility measure for Markov kernels (providing *additional* information)
- 2) We don't claim to have the right one...

...however:

RKHS-norms are a *flexible* way of constructing complexity measures having nice properties

Thanks for your attention !