
Appendix to Supervised Feature Selection via
Dependence Estimation

Le Song, Alex Smola, Arthur Gretton and Karsten Borgwardt

1 Proof of Theorem 1
Proof. Define the Pochammer symbol as(m)n = m!

(m−n)! . Also recall thatKii = Lii = 0. We
prove Theorem 1 by constructing unbiased estimator for each term in equation (3) of the main text:
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Then the relation betweenHSIC(F,G,Prxy) and its unbiased estimatorHSIC(F,G, Z) is
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2 Proof of Theorem 2
Proof. Denote byPZ the probability with respect tom independent observations(xi, yi) drawn
from Prxy. Moreover, we splitt into αt + βt + (1− α− β)t whereα, β > 0 andα + β < 1. The



probability of a positive deviationt has bound
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Using the shorthandz = (x, y), we define the kernels of the U-statistics in the three expressions
above asg(zi, zj) = KijLij , g(zi, zj , zr) = KijLjr andg(zi, zj , zq, zr) = KijLqr. Frinally
employing Hoeffding’s Theorem allows us to bound the three probabilities as
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Setting the argument of all three exponentials equal yieldsα > 0.28: consequently, the positive devi-
ation probability is bounded from above by3e−mt2α2

. Similarly, the negative deviation probability
is also bounded by3e−mt2α2

. Thus the overall probability is bounded by doubling this quantity.
Solving fort yields the desired result.

3 Proof of Theorem 3
Proof. We prove this theorem by first relating the biased estimator of HSIC with the biased estimator
of MMD. The biased estimator of HSIC is 1

(m−1)2 Tr(KHLH) , whereH = I−m−111T, and the

bias is bounded byO(m−1) [1]; The biased estimator of MMD is
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and the bias is also bounded byO(m−1)[2]. ExpandingTr(KHLH) usingH, we obtainTr(KL) +
m−21TK11TL1 − 2m−11TKL1. Due to our choice ofl(y, y′) = ρ(y)ρ(y′), both1TL andL1
are zero matrices. Then the last two terms in the expansion vanish, and we obtainTr(KHLH) =
Tr(KL) in this case. This means that the biased estimator of HSIC is exactly(m − 1)−2 times of
the biased estimator of MMD. Since the biased estimators of HSIC and MMD both deviates from
their unbiased version by onlyO(m−1), the difference between the unbiased estimators of HSIC
and MMD will also be bounded byO(m−1).

The second part is quite similar. Since the empirical KTA is computed as〈K,L〉F , it is equivalent
to Tr(KL). This means that the empirical KTA is the same as the biased estimator of MMD in this
case.

4 Description of Microarray Datasets
A summary of the microarray datasets and their sources is as follows:

• The six datasets studied in [3]. Three of them deal with breast cancer [4, 5, 6] (numbered 1,
2 and 3), two with lung cancer [7, 8] (4, 5), and one with hepatocellular carcinoma [9] (6).
The B cell lymphoma dataset [10] is not used because none of the tested methods produce
classification errors lower than 40%.

• The six datasets studied in [11]. Two prostate cancer [12, 13] (7, 8), two breast cancer [14,
15] (9, 10), and two leukaemia [16, 17] (16, 17).

• Five commonly used bioinformatics benchmark datasets on colon cancer [18] (11), ovarian
cancer [19] (12), leukaemia [20](13), lymphoma [21](18), and one yeast dataset [22](19).



• Nine datasets from the NCBI GEO database. The GDS IDs and reference numbers
for this paper are GDS1962 (20), GDS330 (21), GDS531 (14), GDS589 (22), GDS968
(23), GDS1021 (24), GDS1027 (25), GDS1244 (26), GDS1319 (27), GDS1454 (28), and
GDS1490 (15), respectively.

5 Feature Selection via Continuous Relaxation and Zero Norm
Besides the backward elimination algorithm, feature selection using HSIC can also proceed by con-
verting problem (1) in the main text into a continuous optimization problem. This second approach
is to jointly optimse a relaxed zero norm of a weight vector over the features, which corresponds to
jointly selecting over all features according to a sparsity constraint. This second approach, however,
does not perform as good as the the backward elimination procedure proposed in the main text.
Hence we postpone its description to this appendix and its experimental result is not reported.

We introduce a weightingw ∈ Rn on the dimensions of the data:x 7−→ w ◦ x, where◦ de-
notes element-wise product. Thus feature selection using HSIC becomes an optimization problem
with respective tow (for convenience we denote HSIC as function ofw, HSIC(w)). To obtain a
sparse solution of the selected features, the zero “norm”‖w‖0 is also incorporated into our objective
function. ‖w‖0 computes the number of non-zero entries inw and the sparsity is achieved by im-
posing heavier penalty on solutions with large number of non-zero entries. Mathematically, feature
selection using HSIC is formulated as:

w = arg max
w

HSIC(w) + λ||w||0, w ∈ [0,∞)n (6)

The zero norm, however, is not a continuous function. It is a sum of a set of step function, and can
be approximated with a concave function (α = 5 works well in practice):

||w||0 ≈ 1T(1− e−αw) (7)

The optimization problem in (6) is non-convex in general. If we choose a Gaussian kernel for the
data and use the biased estimator of HSIC, relatively more efficient optimization can be carried out
using the convex-concave procedure (CCCP) [23]. With the added weighting, the Gaussian kernel
becomes a convex functionk(x, x′) = exp(−σ‖w ◦ x − w ◦ x′‖2) of w ∈ [0,∞)n. Then the
objective function in (6) can be decomposed into the difference of two convex functionsg(w) and
h(w):

HSIC(w) + λ‖w‖0 ≈ Tr(K(I−m−111T)L(I−m−111T)) + λ1T(1− e−αw)

= Tr(KL + m−2K11TL11T)︸ ︷︷ ︸− (Tr(2m−1K11TL)− λ1T(1− e−αw))︸ ︷︷ ︸
g(w) h(w)

(8)
g(w) consists of a positive combination of entries in the kernel matrixK andL. If we restrict the
kernels to be nonnegative and bounded by 1, we can guarantee the convexity ofg(w). h(w) is
also convex since it is the difference of a convex part and a concave part. The overall algorithm is
presented in Algorithm 2:

Algorithm 1 Feature Selection via CCCP Algorithm

Input : training dataZ = {(x1, y1), . . . , (x`, y`)}
Output : the setT of selected features
1: initialize w randomly
2: repeat
3: w0 ← w
4: w← arg maxw g(w)−wT∇h(w0), w ∈ [0,∞)n

5: until min(‖w −w0‖, ‖1−w ◦w−1
0 ‖) ≤ ε
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